# CHICOT AQUIFER SUMMARY, 2014 AQUIFER SAMPLING AND ASSESSMENT PROGRAM



APPENDIX 10 TO THE 2015 TRIENNIAL SUMMARY REPORT PARTIAL FUNDING PROVIDED BY THE CWA



# Contents

| BACKGROUN               | D                                                                | 4  |
|-------------------------|------------------------------------------------------------------|----|
| GEOLOGY                 |                                                                  | 4  |
| HYDROGEOL               | OGY                                                              | 5  |
| PROGRAM PA              | ARAMETERS                                                        | 5  |
| INTERPRETA <sup>-</sup> | TION OF DATA                                                     | 6  |
| Field and Co            | onventional Parameters                                           | 6  |
| Inorganic Pa            | ırameters                                                        | 7  |
| Volatile Orga           | anic Compounds                                                   | 7  |
|                         | e Organic Compounds                                              |    |
|                         | nd PCBs                                                          |    |
|                         | ITY TRENDS AND COMPARISON TO HISTORICAL ASSET DATA               |    |
|                         | ID RECOMMENDATIONS                                               |    |
|                         | List of Wells Sampled, Chicot Aquifer – FY 2014                  |    |
|                         | Summary of Field and Conventional Data, Chicot Aquifer – FY 2014 |    |
|                         | Summary of Inorganic Data, Chicot Aquifer – FY 2014              |    |
|                         | Field and Conventional Statistics, FY 2014 ASSET Wells           |    |
| Table 10-5:             | Inorganic Statistics, FY 2014 ASSET Wells                        | 13 |
| Table 10-6:             | Triennial Field and Conventional Statistics, ASSET Wells         | 14 |
|                         | Triennial Inorganic Statistics, ASSET Wells                      |    |
| Table 10-8:             | VOC Analytical Parameters                                        | 15 |
| Table 10-9:             | SVOC Analytical Parameters                                       | 16 |
| Table 10-10             | 0: Pesticides and PCBs                                           | 18 |
| Figure 10-1             | : Location Plat, Chicot Aquifer                                  | 19 |
| Figure 10-2             | : Map of pH Data                                                 | 20 |
| Figure 10-3             | : Map of TDS Lab Data                                            | 21 |
| Figure 10-4             | : Map of Chloride Data                                           | 21 |
| Figure 10-5             | i: Map of Iron Data                                              | 22 |
| Chart 10-1:             | Temperature Trend                                                | 22 |
| Chart 10-2:             | pH Trend                                                         | 23 |
| Chart 10-3:             | Field Specific Conductance Trend                                 | 23 |



| Chart 10-4: Lab Specific Conductance Trend | 24 |
|--------------------------------------------|----|
| Chart 10-5: Field Salinity Trend           | 25 |
| Chart 10-6: Chloride Trend                 | 25 |
| Chart 10-7: Alkalinity Trend               | 26 |
| Chart 10-8: Color Trend                    | 26 |
| Chart 10-9: Sulfate Trend                  | 27 |
| Chart 10-10: Total Dissolved Solids Trend  | 27 |
| Chart 10-11: Hardness Trend                | 28 |
| Chart 10-12: Ammonia Trend                 | 28 |
| Chart 10-13: Nitrite – Nitrate Trend       | 29 |
| Chart 10-14: TKN Trend                     | 29 |
| Chart 10-15: Total Phosphorus Trend        | 30 |
| Chart 10-16: Iron Trend                    | 30 |



#### **BACKGROUND**

The Louisiana Department of Environmental Quality's (LDEQ) Aquifer Sampling and Assessment Program (ASSET) is an ambient monitoring program established to determine and monitor the quality of groundwater produced from Louisiana's major freshwater aquifers. The ASSET Program samples approximately 200 water wells located in 14 aquifers and aquifer systems across the state. The sampling process is designed so that all 14 aquifers and aquifer systems and associated wells are monitored every three years.

In order to better assess the water quality of a particular aquifer, an attempt is made to sample all ASSET Program wells producing from it in a narrow time frame. To more conveniently and economically promulgate those data collected, a summary report on each aquifer is prepared separately. Collectively, these aquifer summaries make up, in part, the ASSET Program's Triennial Summary Report.

Analytical and field data contained in this summary were collected from wells producing from the Chicot aquifer during the 2014 state fiscal year (July 1, 2013 - June 30, 2014). This summary will become Appendix 10 of the ASSET Program Triennial Summary Report for 2015.

These data show that from April through June 2014, 21 wells were sampled which produce from the Chicot aquifer. Of these 21 wells, 11 are classified as public supply, four industrial, two observation, two domestic and one each irrigation and recovery. The wells are located in 12 parishes in southwest Louisiana.

Figure 10-1 shows the geographic locations of the Chicot aquifer and the associated wells. Table 10-1 lists those wells and their corresponding parish, date sampled, owner, depth, and use classification.

Well data, including well location and aquifer assignment, for registered water wells were obtained from the Louisiana Department of Natural Resources water well registration data file.

# **GEOLOGY**

The Chicot aquifer system consists of fining upward sequences of gravels, sands, silts, and clays of the Pleistocene Prairie, intermediate, and high terrace deposits of southwestern Louisiana. The medium to coarse-grained sand and gravel aquifer units dip and thicken toward the Gulf, thin slightly toward the west into Texas, and thicken toward the east where they are overlain by alluvium of the Atchafalaya and Mississippi rivers. The aquifers are confined, have a finer texture, and are increasingly subdivided by silts and clays southward from the northern limit of the outcrop area in southern Vernon and Rapides parishes.

In the Lake Charles area, the Chicot is divided into the shallow alluvial sands, the "200-foot" sand, the "500-foot" sand, and the "700-foot" sand. East of Calcasieu parish the Chicot is divided into the "upper sand" (in hydraulic connection to the Atchafalaya sand, Abbeville sand, and "200-foot" sand) and the "lower sand" ("700-foot" sand). The "500-foot" sand is largely isolated except where it merges with the "700-foot" sand north of Calcasieu Parish. Fresh water in the Chicot and other southwestern Louisiana aquifers is separated from fresh water in



southeast Louisiana by a saltwater ridge along the western edge of the Mississippi River valley. Salt water occurs within the Chicot along the coast and in isolated bodies north of the coast.

#### **HYDROGEOLOGY**

Recharge to the Chicot occurs primarily through the direct infiltration of rainfall in the interstream, upland outcrop-subcrop areas. Recharge also occurs by water movement from the Atchafalaya alluvium, downward infiltration through the clays south of the primary recharge outcrop area, upward movement from the underlying Evangeline aquifer, and inflow from the Vermilion and Calcasieu rivers. Water movement is generally toward the pumping centers at Lake Charles and Eunice. However, there is little movement of water from the west because of pumping in the Orange, Texas area. The hydraulic conductivity varies between 40-220 feet/day.

The maximum depths of occurrence of freshwater in the Chicot range from 100 feet above sea level, to 1,000 feet below sea level. The range of thickness of the fresh water interval in the Chicot is 50 to 1,050 feet. The depths of the Chicot wells that were monitored in conjunction with the ASSET Program range from 66 to 697 feet.

# **PROGRAM PARAMETERS**

The field parameters checked at each ASSET Program well sampling site and the list of conventional parameters analyzed in the laboratory are shown in Table 10-2. The inorganic (total metals) parameters analyzed in the laboratory are listed in Table 10-3. These tables also show the field and analytical results determined for each analyte. For quality control, duplicate samples were taken for each parameter from wells BE-378, CU-1125, and JD-862.

In addition to the field, conventional and inorganic analytical parameters, the target analyte list includes three other categories of compounds: volatiles, semi-volatiles, and pesticides/PCBs. Due to the large number of analytes in these categories, tables were not prepared showing the analytical results for these compounds. A discussion of any detections from any of these three categories, if necessary, can be found in their respective sections. Tables 10-8, 10-9 and 10-10 list the target analytes for volatiles, semi-volatiles and pesticides/PCBs, respectively.

Tables 10-4 and 10-5 provide a statistical overview of field and conventional data, and inorganic data for the Chicot aquifer, listing the minimum, maximum, and average results for these parameters collected in the FY 2014 sampling. Tables 10-6 and 10-7 compare these same parameter averages to historical ASSET derived data for the Chicot aquifer, from fiscal years 1996, 1999, 2002, 2005, 2008, and 2011.

The average values listed in the above referenced tables are determined using all valid, reported results, including those reported as non-detect, or less than the detection limit (< DL). Per Departmental policy concerning statistical analysis (including contouring purposes), one-half the DL is used in place of zero when non-detects are encountered. However, the minimum value is reported < DL, not one-half the DL. If all values for a particular analyte are reported as < DL, then the minimum, maximum, and average values are all reported as < DL.



Due to the variability in the laboratory's reporting detection limits caused by dilution factors, whenever an analyte in question is not detected, the standard reporting detection limit value for each analytical method is used as the DL when performing statistical calculations.

Figures 10-2, 10-3, 10-4, and 10-5, respectively, represent the contoured data for pH, total dissolved solids (TDS), chloride, and iron. Charts 10-1 through 10-16 represent the trend of the graphed parameter, based on the averaged value of that parameter for each three-year reporting period. Discussion of historical data and related trends is found in the **Water Quality Trends and Comparison to Historical ASSET Data** section.

#### INTERPRETATION OF DATA

Under the Federal Safe Drinking Water Act, EPA has established maximum contaminant levels (MCLs) for pollutants that may pose a health risk in public drinking water. An MCL is the highest level of a contaminant that EPA allows in public drinking water. MCLs ensure that drinking water does not pose either a short-term or long-term health risk. While not all wells sampled were public supply wells, the ASSET Program uses the MCLs as a benchmark for further evaluation.

EPA has set secondary standards, which are defined as non-enforceable taste, odor, or appearance guidelines. Field and laboratory data contained in Tables 10-2 and 10-3 show that one or more secondary MCL (SMCL) was exceeded in 19 of the 21 wells sampled in the Chicot aquifer.

#### Field and Conventional Parameters

Table 10-2 shows the field and conventional parameters for which samples are collected at each well and the analytical results for those parameters. Table 10-4 provides an overview of this data for the Chicot aquifer, listing the minimum, maximum, and average results for these parameters.

<u>Federal Primary Drinking Water Standards:</u> A review of the analysis listed in Table 10-2 for field or conventional parameters for this reporting period.

ASSET wells reporting turbidity levels greater than 1.0 NTU do not exceed the Primary MCL of 1.0, as this standard applies to public supply water wells that are under the direct influence of surface water. The Louisiana Department of Health has determined that no public water supply well in Louisiana was in this category.

<u>Federal Secondary Drinking Water Standards:</u> A review of the analysis listed in Table 10-2 shows that three wells exceeded the SMCL for pH, one well exceeded the SMCL for color, and eight wells exceeded the SMCL for TDS. Laboratory results override field results in exceedance determination, thus only laboratory results will be counted in determining SMCL exceedance numbers. Following is a list of SMCL parameter exceedances with well number and results:

pH (SMCL = 6.5 - 8.5 SU):

BE-412 – 6.05 SU V-535 – 6.35 SU R-6947Z - 5.18 SU



#### Total Dissolved Solids (SMCL = 500 mg/L or 0.5 g/L):

|           | LAB RESULTS (in mg/L)                   | FIELD MEASURES (in g/L)            |
|-----------|-----------------------------------------|------------------------------------|
| A O 00407 | COA //                                  | 0.500//                            |
| AC-8316Z  | 624 mg/L                                | 0.563 g/L                          |
| CN-92     | 984 mg/L                                | 1.090 g/L                          |
| CU-862    | 544 mg/L                                | 0.489 g/L                          |
| EV-673    | 528 mg/L                                | 0.465 g/L                          |
| JD-862    | 536 mg/L, Duplicate – 444 mg/L (< SMCL) | 0.580 g/L (Original and Duplicate) |
| SMN-109   | 796 mg/L                                | 0.763 g/L                          |
| VE-151    | 556 mg/L                                | 0.627 g/L                          |
| VE-862    | 592 mg/L                                | 0.701 g/L                          |

#### Inorganic Parameters

Table 10-3 shows the inorganic (total metals) parameters for which samples are collected at each well and the analytical results for those parameters. Table 10-5 provides an overview of this data for the Chicot aquifer, listing the minimum, maximum, and average results for these parameters.

Federal Primary Drinking Water Standards: A review of the analyses listed on Table 10-3 shows that observation well SMN-109 exceeded the MCL for antimony. The MCL for antimony is 6 μg/L, whereas this well reported value was 9.53 μg/L. Because this well is not a drinking water source, public or private, it does not supply water for any other purpose than monitoring, and because there is no previous occurrence of antimony in this well, it was determined that this observation well would be sampled again, on its normal schedule, in three years. No other Chicot aquifer well sampled by the ASSET Program exceeded an MCL for total metals.

<u>Federal Secondary Drinking Water Standards:</u> Laboratory data contained in Table 10-3 shows that 14 of the 21 wells sampled exceeded the secondary MCL for iron as shown in the following list:

#### Iron (SMCL = $300 \mu a/L$ ):

| AC-8316Z – 2,990 μg/L                  | BE-378 – 2,230 μg/L, Duplicate – 2,230 μg/L |
|----------------------------------------|---------------------------------------------|
| CU-10192Z – 732 μg/L                   | CU-1125 – 859 μg/L, Duplicate – 1,700 μg/L  |
| CU-1366 – 385 µg/L                     | CU-1471 – 774 μg/L                          |
| EV-673 – 1,240 μg/L                    | I-7312Z – 925 μg/L                          |
| JD-862 – 2,140 μg/L, Duplicate – 2,190 | LF-572 – 784 μg/L                           |
| SMN-109 – 1,280 μg/L                   | VE-151 – 3,330 μg/L                         |
| VE-862 – 978 μg/L                      | VE-882 – 1,220 μg/L                         |
|                                        |                                             |

# **Volatile Organic Compounds**

Table 10-8 shows the volatile organic compound (VOC) parameters for which samples are collected at each well. Due to the number of analytes in this category, analytical results are not tabulated; however, any detection of a VOC would be discussed in this section.

There were no confirmed detections of VOCs at or above their respective detection limits during the FY 2014 sampling of the Chicot aguifer.



### Semi-Volatile Organic Compounds

Table 10-9 shows the semi-volatile organic compound (SVOC) parameters for which samples are collected at each well. Due to the number of analytes in this category, analytical results are not tabulated; however any detection of a SVOC would be discussed in this section.

There were no confirmed detections of SVOCs at or above their respective detection limits during the FY 2014 sampling of the Chicot aquifer.

#### Pesticides and PCBs

Table 10-10 shows the pesticide and PCB parameters for which samples are collected at each well. Due to the number of analytes in this category, analytical results are not tabulated; however any detection of a pesticide or PCB would be discussed in this section.

There were no confirmed detections of pesticides or PCBs at or above their respective detection limits during the FY 2014 sampling of the Chicot aquifer.

# WATER QUALITY TRENDS AND COMPARISON TO HISTORICAL ASSET DATA

Analytical and field data show that the quality and characteristics of ground water produced from the Chicot aquifer exhibit some changes when comparing current data to that of the six previous sampling rotations (three, six, nine, twelve, fifteen, and eighteen years prior). These comparisons are in Tables 10-6 and 10-7, and in Charts 10-1 to 10-16 of this summary. Over the eighteen-year period, 10 analytes have shown general increases in average concentrations, while seven have shown general decreases. Analytes exhibiting increases are: alkalinity, ammonia, barium, chloride, hardness, iron, salinity, specific conductance (field and lab), TDS and TKN. Analytes exhibiting decreases are: color, copper, nitrite-nitrate, sulfate, temperature, total phosphorus, and zinc. All other analyte averages have remained consistent, or have been non-detect for this period. The number of secondary exceedances in the Chicot aquifer has decreased from the previous sampling in FY 2011 from 35 SMCL exceedances, to 26 in FY 2014.

# SUMMARY AND RECOMMENDATIONS

In summary, the data show that the ground water produced from this aquifer is hard<sup>1</sup> and is of fair quality when considering short-term or long-term health risk guidelines. Laboratory data show that one ASSET well sampled during the Fiscal Year 2014 monitoring of the Chicot aquifer exceeded the primary MCL for antimony in an observation well. No other primary MCL was exceeded in any other well. The data also show that this aquifer is of poor quality when considering taste, odor, or appearance guidelines, due to the number of wells (14) exceeding the SMCL for iron.

<sup>&</sup>lt;sup>1</sup> Classification based on hardness scale from: Peavy, H. S. et al. *Environmental Engineering*. New York: McGraw-Hill, 1985.



Comparison to historical ASSET-derived data shows some change in the quality or characteristics of the Chicot aquifer, with 10 parameters showing increases in average concentrations and seven parameters showing decreases in average concentrations. The remainder of the parameter averages has continued to be consistent over the previous eighteen-year period.

It is recommended that the wells assigned to the Chicot aquifer be re-sampled as planned, in approximately three years, with special attention given to observation well SMN-109 and the reported occurrence of antimony. In addition, several wells should be added to the 21 currently in place to increase the well density for this aquifer.



Table 10-1: List of Wells Sampled, Chicot Aquifer – FY 2014

| Well ID   | Parish          | Date      | Owner                         | Depth<br>(Feet) | Well Use      |
|-----------|-----------------|-----------|-------------------------------|-----------------|---------------|
| AC-539    | Acadia          | 4/28/2014 | City Of Rayne                 | 251             | Public Supply |
| AC-8316Z  | Acadia          | 4/28/2014 | Private Owner                 | 165             | Domestic      |
| BE-378    | Beauregard      | 6/17/2014 | Transcontinental Gas Pipeline | 172             | Industrial    |
| BE-412    | Beauregard      | 4/29/2014 | Boise - Deridder              | 202             | Industrial    |
| BE-488    | Beauregard      | 6/17/2014 | Singer Water District         | 262             | Public Supply |
| CN-92     | Cameron         | 6/26/2014 | USGS                          | 443             | Observation   |
| CU-10192Z | Calcasieu       | 6/9/2014  | Axiall                        | 230             | Recovery      |
| CU-1125   | Calcasieu       | 6/9/2014  | LDOTD                         | 570             | Public Supply |
| CU-1366   | Calcasieu       | 6/17/2014 | City Of Lake Charles          | 685             | Public Supply |
| CU-1471   | Calcasieu       | 6/9/2014  | Axiall                        | 525             | Industrial    |
| CU-862    | Calcasieu       | 6/9/2014  | Citgo Petroleum Corporation   | 560             | Industrial    |
| EV-673    | Evangeline      | 4/28/2014 | City Of Mamou                 | 247             | Public Supply |
| I-7312Z   | Iberia          | 5/13/2014 | Breaux Electric               | 180             | Public Supply |
| JD-862    | Jefferson Davis | 5/12/2014 | City Of Welsh                 | 697             | Public Supply |
| LF-572    | Lafayette       | 4/28/2014 | LUS                           | 570             | Public Supply |
| R-6947Z   | Rapides         | 5/12/2014 | Private Owner                 | 110             | Domestic      |
| SMN-109   | St. Martin      | 6/26/2014 | USGS                          | 375             | Observation   |
| V-535     | Vernon          | 4/29/2014 | Marlow Fire Station           | 66              | Public Supply |
| VE-151    | Vermilion       | 5/13/2014 | Vermilion Oaks Country Club   | 250             | Irrigation    |
| VE-862    | Vermilion       | 5/13/2014 | Town of Gueydan               | 249             | Public Supply |
| VE-882    | Vermilion       | 5/13/2014 | City of Kaplan                | 279             | Public Supply |



Table 10-2: Summary of Field and Conventional Data, Chicot Aquifer – FY 2014

| Well ID   | pH<br>SU | Sal.<br>ppt | Sp. Cond.<br>mmhos/cm | Temp<br>Deg.<br>C | TDS<br>g/L | Alk<br>mg/L | CI<br>mg/L    | Color<br>PCU | Hard.<br>mg/L | Nitrite-<br>Nitrate<br>(as N)<br>mg/L | NH3<br>mg/L | Tot. P<br>mg/L | Sp. Cond.<br>umhos/cm | SO4<br>mg/L           | TDS<br>mg/L | TKN<br>mg/L | TSS<br>mg/L | Turb.<br>NTU |
|-----------|----------|-------------|-----------------------|-------------------|------------|-------------|---------------|--------------|---------------|---------------------------------------|-------------|----------------|-----------------------|-----------------------|-------------|-------------|-------------|--------------|
|           | LABO     | DRATO       | RY DETECTION          | ON LIMIT          | 'S† →      | 5           | 0.25/<br>1.25 | 1            | 5             | 0.01                                  | 0.05        | 0.05           | 10                    | 0.25/1.25<br>2.5/6.25 | 10          | 0.1         | 4           | 0.3          |
|           |          | FIE         | LD PARAMET            | TERS              |            |             |               |              |               |                                       | LABORA      | TORY PA        | RAMETERS              |                       |             |             |             |              |
| AC-539    | 7.63     | 0.28        | 0.587                 | 22.43             | 0.382      | 256         | 27.0          | 1            | 176           | 0.06                                  | 0.56        | 0.11           | 606                   | < DL                  | 32          | 1.00        | < DL        | < DL         |
| AC-8316Z  | 7.41     | 0.43        | 0.866                 | 21.73             | 0.563      | 334         | 75.0          | 13           | 292           | < DL                                  | 1.47        | 0.28           | 874                   | 22.9                  | 624         | 2.08        | < DL        | 13.7         |
| BE-378    | 6.91     | 0.16        | 0.327                 | 22.23             | 0.213      | 64          | 40.5          | 9            | 80            | 0.01                                  | < DL        | 0.47           | 328                   | 5.1                   | 392         | < DL        | < DL        | 0.8          |
| BE-378*   | 6.91     | 0.16        | 0.327                 | 22.23             | 0.213      | 70          | 40.5          | 9            | 84            | < DL                                  | < DL        | 0.45           | 331                   | 5.0                   | 360         | < DL        | < DL        | 0.4          |
| BE-412    | 6.05     | 0.02        | 0.053                 | 20.47             | 0.034      | 10          | 6.0           | < DL         | < DL          | 0.02                                  | < DL        | < DL           | 58                    | 0.3                   | 52          | 0.15        | < DL        | < DL         |
| BE-488    | 6.90     | 0.03        | 0.070                 | 21.23             | 0.045      | 16          | 6.2           | < DL         | < DL          | < DL                                  | < DL        | < DL           | 78                    | 0.6                   | 176         | < DL        | < DL        | 0.4          |
| CN-92     | 7.71     | 0.85        | 1.677                 | 23.22             | 1.090      | 260         | 375.0         | 5            | 172           | < DL                                  | 0.50        | 0.05           | 1,720                 | 0.6                   | 984         | 0.50        | < DL        | < DL         |
| CU-10192Z | 7.80     | 0.19        | 0.393                 | 22.37             | 0.256      | 140         | 15.6          | < DL         | 64            | < DL                                  | 0.23        | 0.24           | 521                   | 1.4                   | 368         | 0.40        | < DL        | 1.8          |
| CU-1125   | 7.62     | 0.17        | 0.348                 | 22.64             | 0.226      | 106         | 24.3          | 9            | 120           | < DL                                  | < DL        | 0.28           | 356                   | 2.3                   | 252         | 0.36        | < DL        | 2.4          |
| CU-1125*  | 7.62     | 0.17        | 0.348                 | 22.64             | 0.226      | 128         | 24.4          | < DL         | 204           | 0.01                                  | 0.13        | 0.22           | 358                   | 2.0                   | 264         | 0.43        | < DL        | 1.5          |
| CU-1366   | 7.23     | 0.19        | 0.393                 | 23.76             | 0.256      | 100         | 34.1          | 5            | 100           | < DL                                  | 0.12        | 0.25           | 407                   | 3.6                   | 412         | 0.12        | < DL        | 0.6          |
| CU-1471   | 7.62     | 0.24        | 0.509                 | 24.63             | 0.331      | 164         | 66.3          | < DL         | 52            | 0.02                                  | 0.19        | 0.25           | 405                   | 2.0                   | 272         | 0.44        | < DL        | 3.7          |
| CU-862    | 6.72     | 0.37        | 0.752                 | 24.48             | 0.489      | 180         | 141.0         | < DL         | 88            | < DL                                  | < DL        | 0.13           | 781                   | 0.2                   | 544         | 0.40        | 6           | 20.5         |
| EV-673    | 6.87     | 0.35        | 0.715                 | 21.52             | 0.465      | 264         | 77.2          | 9            | 164           | < DL                                  | 0.30        | 0.41           | 731                   | 0.5                   | 528         | 0.38        | < DL        | 7.7          |
| I-7312Z   | 7.38     | 0.21        | 0.435                 | 22.22             | 0.283      | 242         | 4.6           | < DL         | < DL          | < DL                                  | 0.13        | 0.20           | 463                   | < DL                  | 244         | 0.31        | < DL        | 3.4          |
| JD-862    | 6.98     | 0.44        | 0.893                 | 24.44             | 0.580      | 130         | 199.0         | < DL         | 152           | < DL                                  | 0.20        | 0.46           | 910                   | < DL                  | 536         | 0.18        | 5           | 15.9         |
| JD-862*   | 6.98     | 0.44        | 0.893                 | 24.44             | 0.580      | 140         | 201.0         | < DL         | 140           | < DL                                  | 0.21        | 0.44           | 914                   | < DL                  | 444         | 0.41        | 5           | 15.4         |
| LF-572    | 7.57     | 0.18        | 0.382                 | 20.86             | 0.248      | 170         | 6.0           | 61           | 172           | < DL                                  | 0.24        | 0.30           | 391                   | 4.3                   | 344         | 1.08        | < DL        | 4.0          |
| R-6947Z   | 5.18     | 0.02        | 0.054                 | 20.37             | 0.035      | 6           | 4.7           | < DL         | < DL          | 0.15                                  | < DL        | 0.08           | 62                    | 0.8                   | 32          | < DL        | < DL        | < DL         |
| SMN-109   | 6.92     | 0.58        | 1.173                 | 21.61             | 0.763      | 416         | 151.0         | 5            | 292           | < DL                                  | 0.82        | 0.16           | 1280                  | 0.3                   | 796         | 0.73        | < DL        | 3.8          |
| V-535     | 6.35     | 0.01        | 0.023                 | 20.33             | 0.015      | < DL        | 3.2           | 5            | < DL          | 0.01                                  | < DL        | < DL           | 28                    | 0.4                   | < DL        | 0.17        | < DL        | < DL         |
| VE-151    | 7.35     | 0.48        | 0.964                 | 22.14             | 0.627      | 382         | 105.0         | < DL         | 128           | < DL                                  | 0.57        | 0.38           | 994                   | 1.3                   | 556         | 0.59        | 10          | 25.5         |
| VE-862    | 7.69     | 0.53        | 1.078                 | 22.58             | 0.701      | 400         | 139.0         | < DL         | 212           | < DL                                  | 2.10        | 0.24           | 1140                  | < DL                  | 592         | 1.82        | < DL        | 3.0          |
| VE-882    | 7.47     | 0.39        | 0.790                 | 21.54             | 0.513      | 400         | 48.6          | < DL         | 248           | < DL                                  | 1.00        | 0.34           | 839                   | < DL                  | 472         | 0.96        | < DL        | 4.6          |

†Detection limits vary due to dilution factor

\*Denotes Duplicate Sample

Shaded cells exceed EPA Secondary Standards



Table 10-3: Summary of Inorganic Data, Chicot Aquifer – FY 2014

| Well ID                           | Antimony<br>µg/L | Arsenic<br>μg/L | Barium<br>μg/L | Beryllium<br>μg/L | Cadmium<br>µg/L | Chromium<br>µg/L | Copper<br>µg/L | lron<br>μg/L | Lead<br>μg/L | Mercury<br>μg/L | Nickel<br>µg/L | Selenium<br>µg/L | Silver<br>µg/L | Thallium<br>µg/L | Zinc<br>µg/L |
|-----------------------------------|------------------|-----------------|----------------|-------------------|-----------------|------------------|----------------|--------------|--------------|-----------------|----------------|------------------|----------------|------------------|--------------|
| Laboratory<br>Detection<br>Limits | 5                | 4               | 5              | 2                 | 2               | 4                | 2              | 100          | 1            | 0.0002          | 3              | 5                | 1              | 2                | 6            |
| AC-539                            | < DL             | < DL            | 463            | < DL              | < DL            | < DL             | 3.1            | < DL         | < DL         | < DL            | < DL           | < DL             | < DL           | < DL             | < DL         |
| AC-8316Z                          | < DL             | < DL            | 641            | < DL              | < DL            | < DL             | 2.4            | 2,990        | < DL         | < DL            | < DL           | < DL             | < DL           | < DL             | < DL         |
| BE-378                            | < DL             | < DL            | 122            | < DL              | < DL            | < DL             | < DL           | 2,230        | < DL         | < DL            | < DL           | < DL             | < DL           | < DL             | < DL         |
| BE-378*                           | < DL             | < DL            | 122            | < DL              | < DL            | < DL             | < DL           | 2,230        | < DL         | < DL            | < DL           | < DL             | < DL           | < DL             | < DL         |
| BE-412                            | < DL             | < DL            | 94             | < DL              | < DL            | < DL             | 3.2            | < DL         | < DL         | < DL            | < DL           | < DL             | < DL           | < DL             | < DL         |
| BE-488                            | < DL             | < DL            | 75             | < DL              | < DL            | < DL             | 11.1           | < DL         | 1.2          | < DL            | < DL           | < DL             | < DL           | < DL             | 19.4         |
| CN-92                             | < DL             | < DL            | 875            | < DL              | < DL            | < DL             | 2.4            | 266          | < DL         | < DL            | < DL           | < DL             | < DL           | < DL             | 91.6         |
| CU-10192Z                         | < DL             | < DL            | 194            | < DL              | < DL            | < DL             | < DL           | 732          | < DL         | < DL            | < DL           | < DL             | < DL           | < DL             | < DL         |
| CU-1125                           | < DL             | < DL            | 219            | < DL              | < DL            | < DL             | < DL           | 859          | < DL         | < DL            | < DL           | < DL             | < DL           | < DL             | < DL         |
| CU-1125*                          | < DL             | < DL            | 448            | < DL              | < DL            | < DL             | < DL           | 1,700        | < DL         | < DL            | < DL           | < DL             | < DL           | < DL             | < DL         |
| CU-1366                           | < DL             | < DL            | 234            | < DL              | < DL            | < DL             | < DL           | 385          | < DL         | < DL            | < DL           | < DL             | < DL           | < DL             | < DL         |
| CU-1471                           | < DL             | < DL            | 189            | < DL              | < DL            | < DL             | < DL           | 774          | < DL         | < DL            | < DL           | < DL             | < DL           | < DL             | 16.2         |
| CU-862                            | < DL             | < DL            | 248            | < DL              | < DL            | < DL             | < DL           | 201          | < DL         | < DL            | < DL           | < DL             | < DL           | < DL             | 260.0        |
| EV-673                            | < DL             | < DL            | 292            | < DL              | < DL            | < DL             | 4.9            | 1,240        | < DL         | < DL            | 3.97           | < DL             | < DL           | < DL             | 12.8         |
| I-7312Z                           | < DL             | < DL            | 159            | < DL              | < DL            | < DL             | 3.8            | 925          | < DL         | < DL            | < DL           | < DL             | < DL           | < DL             | < DL         |
| JD-862                            | < DL             | < DL            | 748            | < DL              | < DL            | < DL             | < DL           | 2,140        | < DL         | < DL            | < DL           | < DL             | < DL           | < DL             | < DL         |
| JD-862*                           | < DL             | < DL            | 759            | < DL              | < DL            | < DL             | < DL           | 2,190        | < DL         | < DL            | 3.39           | < DL             | < DL           | < DL             | < DL         |
| LF-572                            | < DL             | < DL            | 211            | < DL              | < DL            | < DL             | < DL           | 784          | < DL         | < DL            | < DL           | < DL             | < DL           | < DL             | < DL         |
| R-6947Z                           | < DL             | < DL            | 46             | < DL              | < DL            | < DL             | 8.1            | < DL         | < DL         | < DL            | 3.82           | < DL             | < DL           | < DL             | 55.4         |
| SMN-109                           | 9.53             | < DL            | 748            | < DL              | < DL            | < DL             | < DL           | 1,280        | < DL         | < DL            | < DL           | < DL             | < DL           | < DL             | 476.0        |
| V-535                             | < DL             | < DL            | 28             | < DL              | < DL            | < DL             | 16.8           | 105          | < DL         | < DL            | < DL           | < DL             | < DL           | < DL             | 8.4          |
| VE-151                            | < DL             | < DL            | 349            | < DL              | < DL            | < DL             | < DL           | 3,330        | < DL         | < DL            | < DL           | < DL             | < DL           | < DL             | 7.4          |
| VE-862                            | < DL             | < DL            | 928            | < DL              | < DL            | < DL             | 4.2            | 978          | 2.9          | < DL            | < DL           | < DL             | < DL           | < DL             | < DL         |
| VE-882                            | < DL             | < DL            | 546            | < DL              | < DL            | < DL             | < DL           | 1,220        | < DL         | < DL            | < DL           | < DL             | < DL           | < DL             | < DL         |
| *Denotes Dunlic                   |                  |                 |                | 4 B I             | Standarde       | _                | od EDA 9       |              | <u> </u>     |                 |                |                  |                |                  |              |

\*Denotes Duplicate Sample

Exceed EPA Secondary Standards



Table 10-4: Field and Conventional Statistics, FY 2014 ASSET Wells

|            | PARAMETER                       | MINIMUM | MAXIMUM | AVERAGE |
|------------|---------------------------------|---------|---------|---------|
|            | pH (SU)                         | 5.18    | 7.80    | 7.12    |
| Q          | Salinity (ppt)                  | 0.01    | 0.85    | 0.29    |
| FIELD      | Specific Conductance (mmhos/cm) | 0.023   | 1.677   | 0.585   |
| H          | Temperature (°C)                | 20.33   | 24.63   | 22.34   |
|            | TDS (g/L)                       | 0.015   | 1.090   | 0.381   |
|            | Alkalinity (mg/L)               | < DL    | 416     | 182     |
|            | Chloride (mg/L)                 | 3.2     | 375.0   | 75.6    |
|            | Color (PCU)                     | < DL    | 64      | 6       |
|            | Hardness (mg/L)                 | < DL    | 292     | 123     |
| ۲X         | Nitrite - Nitrate, as N (mg/L)  | < DL    | 0.15    | 0.02    |
| LABORATORY | Ammonia, as N (mg/L)            | < DL    | 2.10    | 0.37    |
| RA.        | Total Phosphorus (mg/L)         | < DL    | 0.47    | 0.24    |
| BO         | Specific Conductance (umhos/cm) | 28      | 1,720   | 607     |
| <b>1</b>   | Sulfate (mg/L)                  | < DL    | 22.9    | 2.3     |
|            | TDS (mg/L)                      | < DL    | 984     | 387     |
|            | TKN (mg/L)                      | < DL    | 2.08    | 0.53    |
|            | TSS (mg/L)                      | < DL    | 10      | < DL    |
|            | Turbidity (NTU)                 | < DL    | 25.5    | 5.4     |

Table 10-5: Inorganic Statistics, FY 2014 ASSET Wells

| PARAMETER        | MINIMUM | MAXIMUM | AVERAGE |
|------------------|---------|---------|---------|
| Antimony (μg/L)  | < DL    | 9.53    | < DL    |
| Arsenic (μg/L)   | < DL    | < DL    | < DL    |
| Barium (μg/L)    | 28      | 928     | 364     |
| Beryllium (ug/L) | < DL    | < DL    | < DL    |
| Cadmium (ug/L)   | < DL    | < DL    | < DL    |
| Chromium (µg/L)  | < DL    | < DL    | < DL    |
| Copper (µg/L)    | < DL    | 16.8    | 3.1     |
| Iron (μg/L)      | < DL    | 3,330   | 1,115   |
| Lead (µg/L)      | < DL    | 2.9     | < DL    |
| Mercury (μg/L)   | < DL    | < DL    | < DL    |
| Nickel (μg/L)    | < DL    | 4.0     | < DL    |
| Selenium (µg/L)  | < DL    | < DL    | < DL    |
| Silver (µg/L)    | < DL    | < DL    | < DL    |
| Thallium (µg/L)  | < DL    | < DL    | < DL    |
| Zinc (µg/L)      | < DL    | 476.0   | 41.3    |

Table 10-6: Triennial Field and Conventional Statistics, ASSET Wells

|           | DADAMETED                           | AVERAGE VALUES BY FISCAL YEAR |         |         |         |         |         |         |  |  |
|-----------|-------------------------------------|-------------------------------|---------|---------|---------|---------|---------|---------|--|--|
| PARAMETER |                                     | FY 1996                       | FY 1999 | FY 2002 | FY 2005 | FY 2008 | FY 2011 | FY 2014 |  |  |
|           | pH (SU)                             | 7.08                          | 7.01    | 7.03    | 7.22    | 7.33    | 7.28    | 7.12    |  |  |
|           | Salinity (Sal.) (ppt)               | 0.26                          | 0.33    | 0.25    | 0.27    | 0.31    | 0.30    | 0.29    |  |  |
| FIELD     | Specific Conductance (mmhos/cm)     | 0.534                         | 0.650   | 0.5230  | 0.540   | 0.630   | 0.610   | 0.585   |  |  |
| Ш         | Temperature (OC)                    | 22.68                         | 23.20   | 21.85   | 22.38   | 22.47   | 20.91   | 22.34   |  |  |
|           | TDS (Total dissolved solids) (g/L)  | -                             | -       | -       | 0.350   | 0.400   | 0.400   | 0.381   |  |  |
|           | Alkalinity (Alk.) (mg/L)            | 200                           | 189     | 193     | 190     | 216     | 210     | 182     |  |  |
|           | Chloride (Cl) (mg/L)                | 67.5                          | 59.6    | 51.6    | 59.7    | 85.9    | 67.7    | 75.6    |  |  |
|           | Color (PCU)                         | 22                            | 13      | 14      | 13      | 24      | 9       | 6       |  |  |
|           | Hardness (mg/L)                     | 130                           | 123     | 127     | 133     | 162     | 162     | 123     |  |  |
| ≿         | Nitrite - Nitrate , as N (mg/L)     | < DL                          | < DL    | < DL    | < DL    | < DL    | < DL    | 0.02    |  |  |
| RATORY    | Ammonia, as N (NH3) (mg/L)          | 0.36                          | 0.35    | 0.41    | 0.32    | 0.36    | 0.40    | 0.37    |  |  |
| RA.       | Total Phosphorus (P) (mg/L)         | 0.24                          | 0.25    | 0.13    | 0.23    | 0.21    | 0.20    | 0.24    |  |  |
| ABO       | Specific Conductance (umhos/cm)     | 594                           | 552     | 502     | 539     | 660     | 571     | 607     |  |  |
| 2         | Sulfate (SO4) ( mg/L)               | 2.1                           | 2.8     | 1.5     | 2.0     | 2.8     | 3.3     | 2.3     |  |  |
|           | TDS (Total dissolved solids) (mg/L) | 369                           | 352     | 302     | 322     | 384     | 370     | 387     |  |  |
|           | TKN (mg/L)                          | 0.35                          | 0.67    | 0.58    | 0.50    | 0.43    | 0.63    | 0.53    |  |  |
|           | TSS (Total suspended solids) (mg/L) | 20                            | 5       | 4       | 18      | 4       | 7       | < DL    |  |  |
|           | Turbidity (Turb.) (NTU)             | 13.8                          | 14.6    | 13.8    | 16.2    | 20.8    | 12.3    | 5.4     |  |  |

Table 10-7: Triennial Inorganic Statistics, ASSET Wells

|                  | AVERAGE VALUES BY FISCAL YEAR |         |         |         |         |         |         |  |  |
|------------------|-------------------------------|---------|---------|---------|---------|---------|---------|--|--|
| PARAMETER        | FY 1996                       | FY 1999 | FY 2002 | FY 2005 | FY 2008 | FY 2011 | FY 2014 |  |  |
| Antimony (μg/L)  | < DL                          | < DL    | < DL    | < DL    | < DL    | < DL    | < DL    |  |  |
| Arsenic (μg/L)   | < DL                          | < DL    | < DL    | < DL    | < DL    | < DL    | < DL    |  |  |
| Barium (μg/L)    | 277.6                         | 312.0   | 297.0   | 359.0   | 389.8   | 326.9   | 364     |  |  |
| Beryllium (ug/L) | < DL                          | < DL    | < DL    | < DL    | < DL    | < DL    | < DL    |  |  |
| Cadmium (ug/L)   | < DL                          | < DL    | < DL    | < DL    | < DL    | < DL    | < DL    |  |  |
| Chromium (μg/L)  | < DL                          | < DL    | < DL    | < DL    | < DL    | < DL    | < DL    |  |  |
| Copper (μg/L)    | 14.4                          | 35.8    | 25.7    | 42.2    | 7.2     | 4.8     | 3.1     |  |  |
| Iron (μg/L)      | 1,824                         | 1,971   | 1,795   | 3,074   | 2,238   | 1,432   | 1,115   |  |  |
| Lead (µg/L)      | < DL                          | < DL    | < DL    | < DL    | < DL    | < DL    | < DL    |  |  |
| Mercury (μg/L)   | < DL                          | < DL    | < DL    | < DL    | < DL    | < DL    | < DL    |  |  |
| Nickel (μg/L)    | < DL                          | < DL    | < DL    | < DL    | < DL    | < DL    | < DL    |  |  |
| Selenium (µg/L)  | < DL                          | < DL    | < DL    | < DL    | < DL    | < DL    | < DL    |  |  |
| Silver (μg/L)    | < DL                          | < DL    | < DL    | < DL    | < DL    | < DL    | < DL    |  |  |
| Thallium (μg/L)  | < DL                          | < DL    | < DL    | < DL    | < DL    | < DL    | < DL    |  |  |
| Zinc (µg/L)      | 346.7                         | 152.3   | 123.5   | 620.7   | 105.0   | 123.4   | 41.3    |  |  |

Table 10-8: VOC Analytical Parameters

| COMPOUND                           | METHOD | DETECTION LIMIT<br>(µg/L) |
|------------------------------------|--------|---------------------------|
| 1,1,1-TRICHLOROETHANE              | 624    | 0.5                       |
| 1,1,2,2-TETRACHLOROETHANE          | 624    | 0.5                       |
| 1,1,2-TRICHLOROETHANE              | 624    | 0.5                       |
| 1,1-DICHLOROETHANE                 | 624    | 0.5                       |
| 1,1-DICHLOROETHENE                 | 624    | 0.5                       |
| 1,2-DICHLOROBENZENE                | 624    | 0.5                       |
| 1,2-DICHLOROETHANE                 | 624    | 0.5                       |
| 1,2-DICHLOROPROPANE                | 624    | 0.5                       |
| 1,3-DICHLOROBENZENE                | 624    | 0.5                       |
| 1,4-DICHLOROBENZENE                | 624    | 0.5                       |
| BENZENE                            | 624    | 0.5                       |
| BROMODICHLOROMETHANE               | 624    | 0.5                       |
| BROMOFORM                          | 624    | 0.5                       |
| BROMOMETHANE                       | 624    | 0.5                       |
| CARBON TETRACHLORIDE               | 624    | 0.5                       |
| CHLOROBENZENE                      | 624    | 0.5                       |
| CHLOROETHANE                       | 624    | 0.5                       |
| CHLOROFORM                         | 624    | 0.5                       |
| CHLOROMETHANE                      | 624    | 0.5                       |
| CIS-1,3-DICHLOROPROPENE            | 624    | 0.5                       |
| DIBROMOCHLOROMETHANE               | 624    | 0.5                       |
| ETHYL BENZENE                      | 624    | 0.5                       |
| METHYLENE CHLORIDE                 | 624    | 0.5                       |
| O-XYLENE (1,2-<br>DIMETHYLBENZENE) | 624    | 0.5                       |
| STYRENE                            | 624    | 0.5                       |
| TERT-BUTYL METHYL ETHER            | 624    | 0.5                       |
| TETRACHLOROETHYLENE (PCE)          | 624    | 0.5                       |
| TOLUENE                            | 624    | 0.5                       |
| TRANS-1,2-DICHLOROETHENE           | 624    | 0.5                       |
| TRANS-1,3-DICHLOROPROPENE          | 624    | 0.5                       |
| TRICHLOROETHYLENE (TCE)            | 624    | 0.5                       |
| TRICHLOROFLUOROMETHANE (FREON-11)  | 624    | 0.5                       |
| VINYL CHLORIDE                     | 624    | 0.5                       |
| XYLENES, M & P                     | 624    | 1                         |



Table 10-9: SVOC Analytical Parameters

| COMPOUND<br>(SVOC)                                 | METHOD | DETECTION LIMIT<br>(μg/L) |
|----------------------------------------------------|--------|---------------------------|
| 1,2,3-TRICHLOROBENZENE                             | 625    | 0.5                       |
| 1,2,4-TRICHLOROBENZENE                             | 625    | 5.1                       |
| 2,4,6-TRICHLOROPHENOL                              | 625    | 5.1                       |
| 2,4-DICHLOROPHENOL                                 | 625    | 5.1                       |
| 2,4-DIMETHYLPHENOL                                 | 625    | 5.1                       |
| 2,4-DINITROPHENOL                                  | 625    | 20                        |
| 2,4-DINITROTOLUENE                                 | 625    | 5.1                       |
| 2,6-DINITROTOLUENE                                 | 625    | 5.1                       |
| 2-CHLORONAPHTHALENE                                | 625    | 5.1                       |
| 2-CHLOROPHENOL                                     | 625    | 5.1                       |
| 2-NITROPHENOL                                      | 625    | 10                        |
| 3,3'-DICHLOROBENZIDINE                             | 625    | 5.1                       |
| 4,6-DINITRO-2-METHYLPHENOL                         | 625    | 10                        |
| 4-BROMOPHENYL PHENYL ETHER                         | 625    | 5.1                       |
| 4-CHLORO-3-METHYLPHENOL                            | 625    | 5.1                       |
| 4-CHLOROPHENYL PHENYL ETHER                        | 625    | 5.1                       |
| 4-NITROPHENOL                                      | 625    | 20                        |
| ACENAPHTHENE                                       | 625    | 5.1                       |
| ACENAPHTHYLENE                                     | 625    | 5.1                       |
| ANTHRACENE                                         | 625    | 5.1                       |
| BENZIDINE                                          | 625    | 20                        |
| BENZO(A)ANTHRACENE                                 | 625    | 5.1                       |
| BENZO(A)PYRENE                                     | 625    | 5.1                       |
| BENZO(B)FLUORANTHENE                               | 625    | 5.1                       |
| BENZO(G,H,I)PERYLENE                               | 625    | 5.1                       |
| BENZO(K)FLUORANTHENE                               | 625    | 5.1                       |
| BENZYL BUTYL PHTHALATE                             | 625    | 5.1                       |
| BIS(2-CHLOROETHOXY) METHANE                        | 625    | 5.1                       |
| BIS(2-CHLOROETHYL) ETHER (2-<br>CHLOROETHYL ETHER) | 625    | 5.1                       |
| BIS(2-CHLOROISOPROPYL) ETHER                       | 625    | 5.1                       |
| BIS(2-ETHYLHEXYL) PHTHALATE                        | 625    | 5.1                       |
| CHRYSENE                                           | 625    | 5.1                       |
| DIBENZ(A,H)ANTHRACENE                              | 625    | 5.1                       |
| DIETHYL PHTHALATE                                  | 625    | 5.1                       |
| DIMETHYL PHTHALATE                                 | 625    | 5.1                       |
| DI-N-BUTYL PHTHALATE                               | 625    | 5.1                       |
| DI-N-OCTYLPHTHALATE                                | 625    | 5.1                       |
| FLUORANTHENE                                       | 625    | 5.1                       |

| COMPOUND<br>(SVOC)        | METHOD | DETECTION LIMIT<br>(µg/L) |
|---------------------------|--------|---------------------------|
| FLUORENE                  | 625    | 5.1                       |
| HEXACHLOROBENZENE         | 625    | 5.1                       |
| HEXACHLOROBUTADIENE       | 625    | 5.1                       |
| HEXACHLOROCYCLOPENTADIENE | 625    | 10                        |
| HEXACHLOROETHANE          | 625    | 5.1                       |
| INDENO(1,2,3-C,D)PYRENE   | 625    | 5.1                       |
| ISOPHORONE                | 625    | 5.1                       |
| NAPHTHALENE               | 625    | 5.1                       |
| NITROBENZENE              | 625    | 5.1                       |
| N-NITROSODIMETHYLAMINE    | 625    | 5.1                       |
| N-NITROSODI-N-PROPYLAMINE | 625    | 10                        |
| N-NITROSODIPHENYLAMINE    | 625    | 5.1                       |
| PENTACHLOROPHENOL         | 625    | 10                        |
| PHENANTHRENE              | 625    | 5.1                       |
| PHENOL                    | 625    | 5.1                       |



Table 10-10: Pesticides and PCBs

| COMPOUND                                   | METHOD | DETECTION LIMITS<br>(µg/L) |  |
|--------------------------------------------|--------|----------------------------|--|
| ALDRIN                                     | 608    | 0.051                      |  |
| ALPHA BHC (ALPHA<br>HEXACHLOROCYCLOHEXANE) | 608    | 0.051                      |  |
| ALPHA ENDOSULFAN                           | 608    | 0.051                      |  |
| ALPHA-CHLORDANE                            | 608    | 0.051                      |  |
| BETA BHC (BETA<br>HEXACHLOROCYCLOHEXANE)   | 608    | 0.051                      |  |
| BETA ENDOSULFAN                            | 608    | 0.051                      |  |
| CHLORDANE                                  | 608    | 0.2                        |  |
| DELTA BHC (DELTA<br>HEXACHLOROCYCLOHEXANE) | 608    | 0.051                      |  |
| DIELDRIN                                   | 608    | 0.051                      |  |
| ENDOSULFAN SULFATE                         | 608    | 0.051                      |  |
| ENDRIN                                     | 608    | 0.051                      |  |
| ENDRIN ALDEHYDE                            | 608    | 0.051                      |  |
| ENDRIN KETONE                              | 608    | 0.051                      |  |
| HEPTACHLOR                                 | 608    | 0.051                      |  |
| HEPTACHLOR EPOXIDE                         | 608    | 0.051                      |  |
| METHOXYCHLOR                               | 608    | 0.051                      |  |
| P,P'-DDD                                   | 608    | 0.051                      |  |
| P,P'-DDE                                   | 608    | 0.051                      |  |
| P,P'-DDT                                   | 608    | 0.051                      |  |
| PCB-1016 (AROCHLOR 1016)                   | 608    | 0.51                       |  |
| PCB-1221 (AROCHLOR 1221)                   | 608    | 0.51                       |  |
| PCB-1232 (AROCHLOR 1232)                   | 608    | 0.51                       |  |
| PCB-1242 (AROCHLOR 1242)                   | 608    | 0.51                       |  |
| PCB-1248 (AROCHLOR 1248)                   | 608    | 0.51                       |  |
| PCB-1254 (AROCHLOR 1254)                   | 608    | 0.51                       |  |
| PCB-1260 (AROCHLOR 1260)                   | 608    | 0.51                       |  |
| TOXAPHENE                                  | 608    | 3.1                        |  |

Figure 10-1: Location Plat, Chicot Aquifer

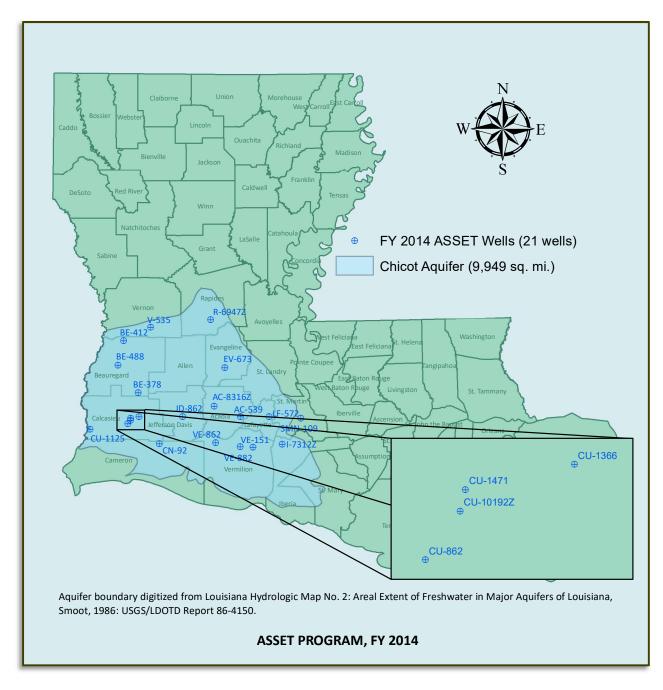
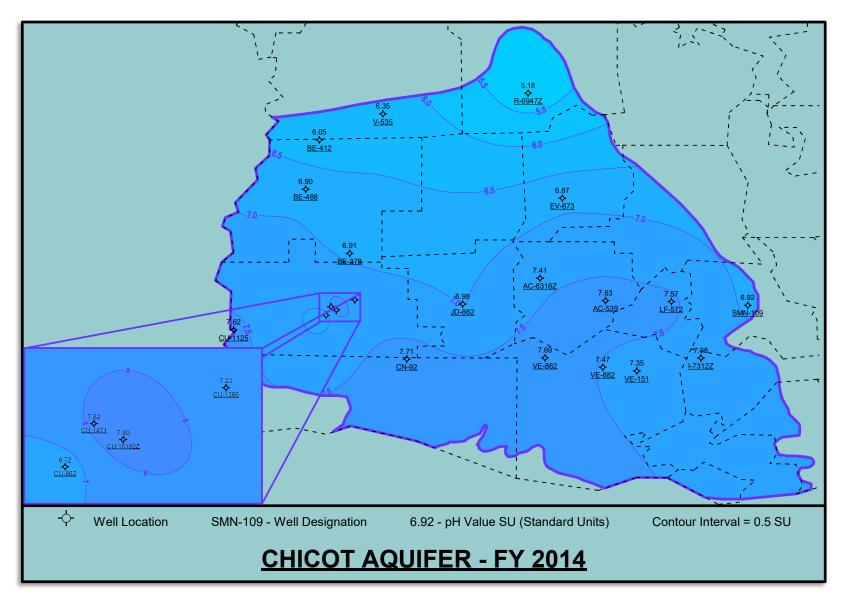






Figure 10-2: Map of pH Data



< DL **\$** <u>V-535</u> 52 BE-412 176 **\$** BE-488 528 **\$ EV-673** 624 •**Q** AC-8316Z 592 **>** VE-862 1-7312Z 8 272 CU-1471 368 Well Location SMN-109 - Well Designation 796 - TDS Value mg/L (milligrams per Liter) Contour Interval = 100 mg/L **CHICOT AQUIFER - FY 2014** 

Figure 10-3: Map of TDS Lab Data



4.7 **.** <u>R-6947Z</u> 6.0 BE-412 6.2 **•** BE-488 77.2 **•** <u>EV-673</u> 75.0 •• AC-8316Z 139.0 VE-862 1-7312Z \_ <del>\_</del> <u>CN-92</u> Well Location SMN-109 - Well Designation 151.0 - Chloride Value mg/L (milligrams per Liter) Contour Interval = 50 mg/L **CHICOT AQUIFER - FY 2014** 

Figure 10-4: Map of Chloride Data



< DL **-**R-6947Z 105 **-**<u>V-535</u> < DL - - - -BE-412 < DL -**\$** BE-488 1,240 **\$** EV-673 1,280 -SMN-109 978 **VE-862** CN-92 385 CU-1366 774 **C**U-1471 732 **C**U-10192Z 201 **-**<u>CU-862</u> Well Location SMN-109 - Well Designation 1,280 - Iron Value µg/L (milligrams per Liter) Contour Interval = 500 µg/L **CHICOT AQUIFER - FY 2014** 

Figure 10-5: Map of Iron Data



Chart 10-1: Temperature Trend

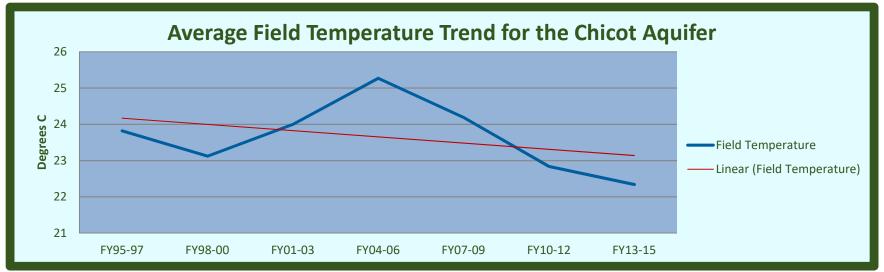



Chart 10-2: pH Trend

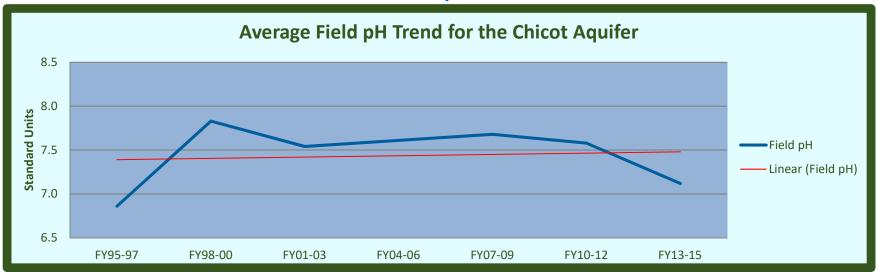



Chart 10-3: Field Specific Conductance Trend

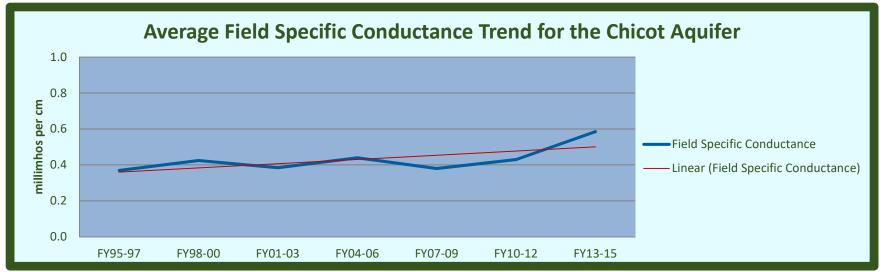



Chart 10-4: Lab Specific Conductance Trend

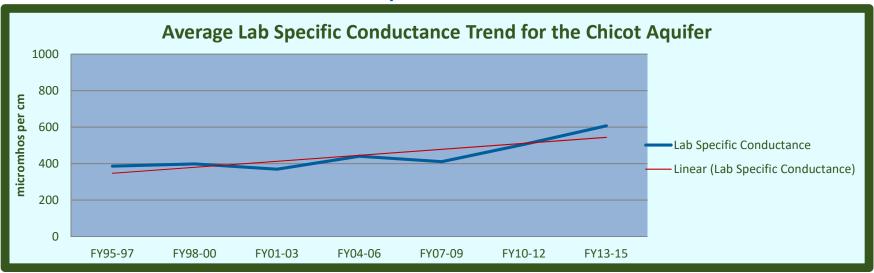



Chart 10-5: Field Salinity Trend

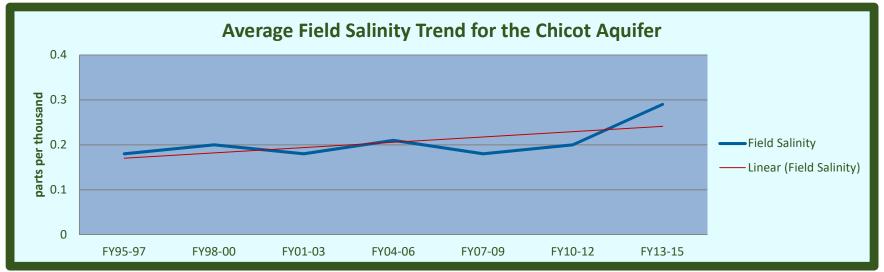



Chart 10-6: Chloride Trend

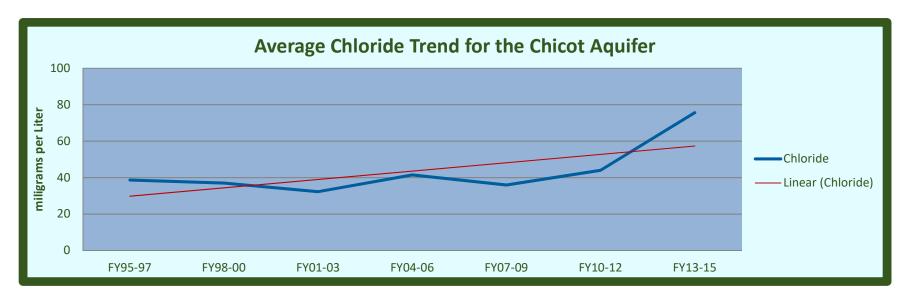



Chart 10-7: Alkalinity Trend

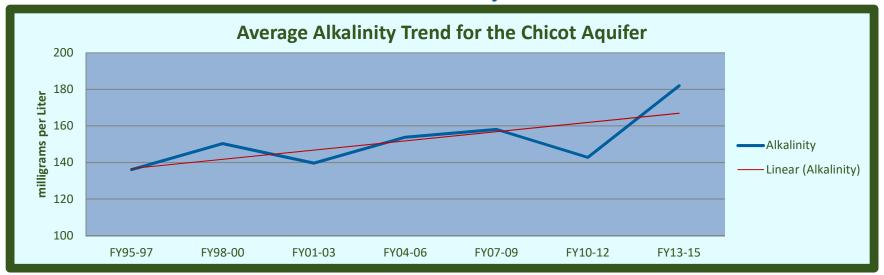



Chart 10-8: Color Trend

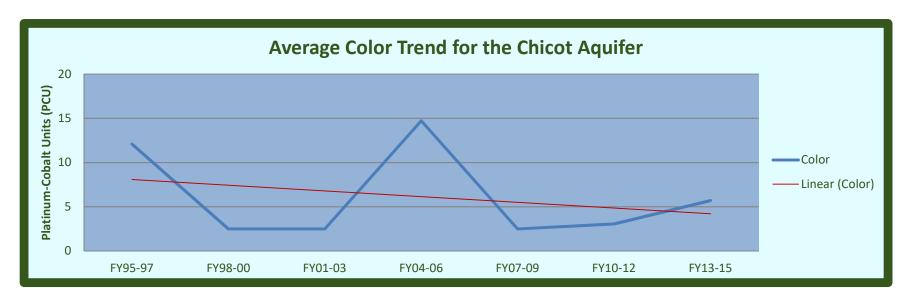



Chart 10-9: Sulfate Trend

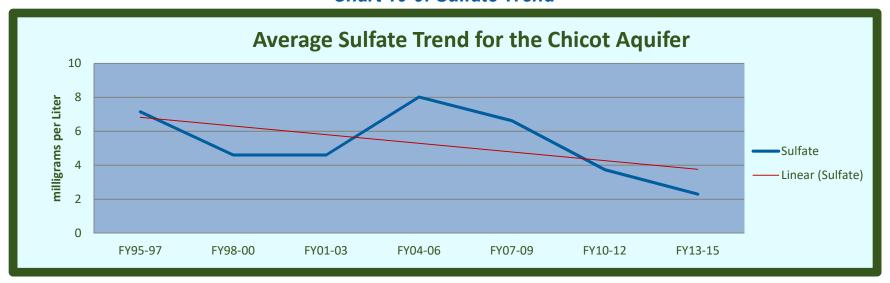



Chart 10-10: Total Dissolved Solids Trend



Chart 10-11: Hardness Trend

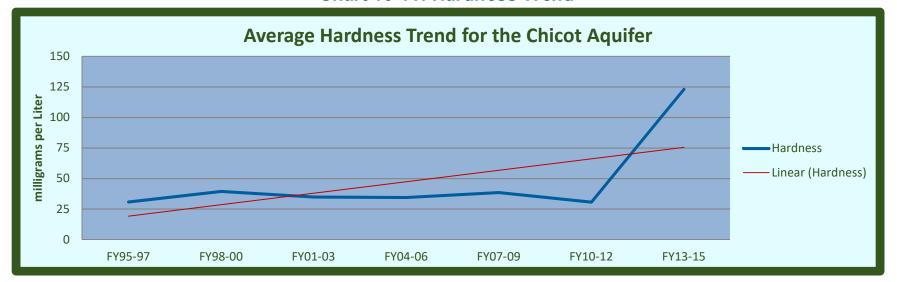



Chart 10-12: Ammonia Trend

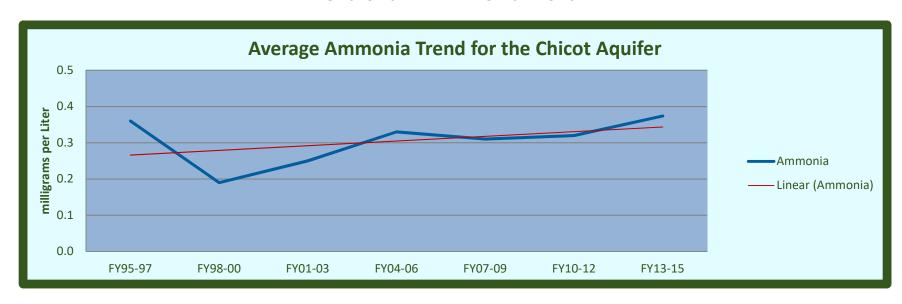



Chart 10-13: Nitrite - Nitrate Trend

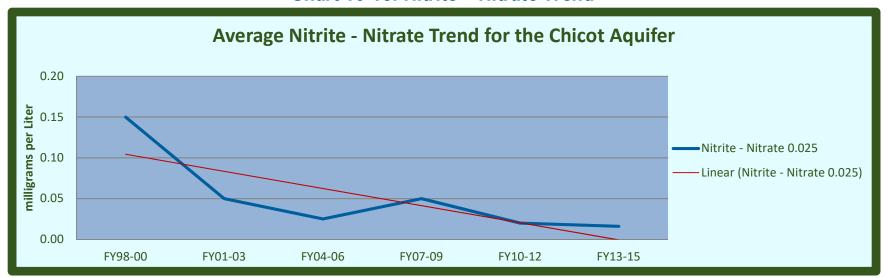



Chart 10-14: TKN Trend

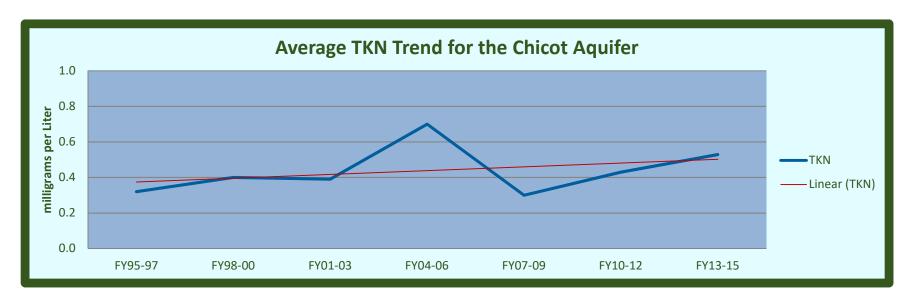



Chart 10-15: Total Phosphorus Trend

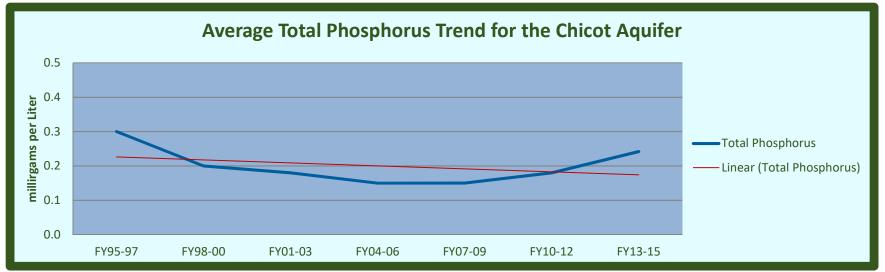
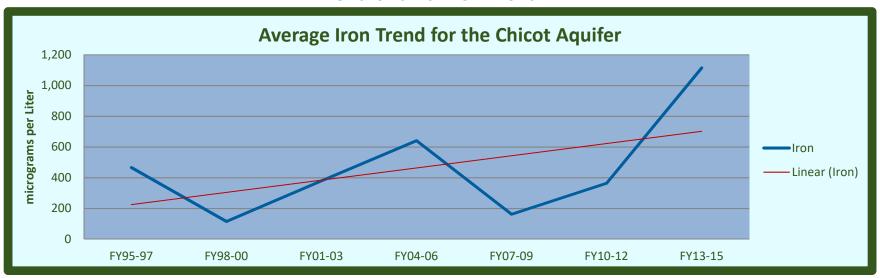




Chart 10-16: Iron Trend

