JASPER EQUIVALENT AQUIFER SUMMARY, 2018 AQUIFER SAMPLING AND ASSESSMENT PROGRAM

APPENDIX 14 TO THE 2018 TRIENNIAL SUMMARY REPORT PARTIAL FUNDING PROVIDED BY THE CWA

Contents

BACKGROUND	4
GEOLOGY	4
HYDROGEOLOGY	4
PROGRAM PARAMETERS	5
INTERPRETATION OF DATA	6
Field and Conventional Parameters	6
Inorganic Parameters	7
Volatile Organic Compounds	7
Semi-Volatile Organic Compounds	7
Pesticides and PCBs	7
WATER QUALITY TRENDS AND COMPARISON TO HISTORICAL ASSET DATA	8
SUMMARY AND RECOMMENDATIONS	8
Table 14-1: List of Wells Sampled, Jasper Equivalent Aquifer – FY 2018	9
Table 14-2: Summary of Field and Conventional Data, Jasper Equivalent Aquifer – FY 2018	
Table 14-3: Summary of Inorganic Data, Jasper Equivalent Aquifer – FY 2018	11
Table 14-4: FY 2018 Field and Conventional Statistics, ASSET Wells	12
Table 14-5: FY 2018 Inorganic Statistics, ASSET Wells	12
Table 14-6: Triennial Field and Conventional Statistics, ASSET Wells	13
Table 14-7: Triennial Inorganic Statistics, ASSET Wells	13
Table 14-8: Volatile Organic Compound List	14
Table 14-9: Semi-Volatile Organic Compound List	
Table 14-10: Pesticide and PCB List	
Figure 14-1: Location Plat, Jasper Equivalent Aquifer	
Chart 14-1: Temperature Trend	19
Chart 14-2: pH Trend	
Chart 14-3: Specific Conductance Trend	
Chart 14-4: Field Salinity Trend	
Chart 14-5: Chloride Trend	
Chart 14-6: Total Dissolved Solids Trend	
Chart 14-7: Alkalinity Trend	22

Chart 14-8: Hardness Trend	22
Chart 14-9: Sulfate Trend	23
Chart 14-10: Color Trend	23
Chart 14-11: Ammonia Trend	24
Chart 14-12: Nitrite - Nitrate Trend	24
Chart 14-13: Total Kjeldahl Nitrogen Trend	25
Chart 14-14: Total Phosphorus Trend	25
Chart 14-15: Barium Trend	26
Chart 14-16: Iron Trend	26
Chart 14-17: Zinc Trend	27

BACKGROUND

The Louisiana Department of Environmental Quality's (LDEQ) Aquifer Sampling and Assessment (ASSET) Program is an ambient monitoring program established to determine and monitor the quality of groundwater produced from Louisiana's major freshwater aquifers. The ASSET Program samples approximately 200 water wells located in 14 aquifers across the state. The sampling process is designed so that all 14 aquifers and associated wells are monitored every three years.

In order to better assess the water quality of a particular aquifer, an attempt is made to sample all ASSET Program wells producing from it in a narrow time frame. To more conveniently and economically promulgate those data collected, a summary report on each aquifer is prepared separately. Collectively, these aquifer summaries will make up, in part, the ASSET Program's Triennial Summary Report.

Analytical and field data contained in this summary were collected from wells producing from the Jasper Equivalent aquifer during the 2018 state fiscal year (July 1, 2017 - June 30, 2018). This summary will become Appendix 14 of the ASSET Program Triennial Summary Report for 2018.

These data show that from October 2017 through June of 2018, 15 wells were sampled which produce from the Jasper Equivalent aquifer. Of these 15 wells, twelve are classified as public supply, and one each of irrigation, industrial and domestic classification. The wells are located in nine parishes in southeast Louisiana.

Figure 14-1 shows the geographic locations of the Jasper Equivalent aquifer and the associated wells, whereas Table 14-1 lists the wells monitored along with their total depths, use made of produced waters and date sampled.

Well data, including well location and aquifer assignment, for registered water wells were obtained from the Louisiana Department of Natural Resources' water well registration data file.

GEOLOGY

The Jasper Equivalent aquifer is composed of the Miocene aged aquifers of the Florida Parishes and Pointe Coupee Parish. These Miocene sediments outcrop in southwestern Mississippi. The sedimentary sequences that make up the aquifer are subdivided into several aquifer units separated by confining beds. Northward within southeast Louisiana, fewer units are recognized because some younger units pinch out updip and some clay layers present to the south disappear. Where clay layers are discontinuous or disappear, aquifer units coalesce. The aquifers consist of fine to coarse sand and gravel, with grain size increasing and sorting decreasing with depth.

HYDROGEOLOGY

The deposits that constitute the individual aquifers are not readily differentiated at the surface and act as one hydraulic that can be subdivided into several hydrologic zones in the subsurface. A zone or ridge of saline water occurs within the Miocene sediments beneath the Mississippi River alluvial valley. Recharge occurs primarily by the direct infiltration of rainfall in interstream, upland outcrop areas, and by the movement of water between aquifers. The hydraulic conductivity varies between 10-200 feet/day.

The maximum depths of occurrence of freshwater in the Jasper Equivalent aquifer range from 500 to 3,200 feet below sea level. The range of thickness of the fresh water interval in the Jasper Equivalent aquifer is 1,600 to 2,350 feet. The depths of the wells that were monitored in conjunction with the ASSET Program range from 960 to 2,700 feet below ground surface.

PROGRAM PARAMETERS

The field parameters checked at each ASSET well and the list of conventional parameters analyzed in the laboratory are shown in Table 14-2. The inorganic (total metals) parameters analyzed in the laboratory are listed in Table 14-3. These tables also show the field and analytical results determined for each analyte. For quality control, duplicate samples were taken for each parameter at EB-630, EF-272, SH-104, ST-FOLSOM and WA-248.

In addition to the field, conventional and inorganic analytical parameters, the target analyte list includes three other categories of compounds: volatiles, semi-volatiles, and pesticides/PCBs. Due to the large number of analytes in these categories, tables were not prepared showing the analytical results for these compounds. A discussion of any detections from any of these three categories, if necessary can be found in their respective sections. Tables 14-8, 14-9 and 14-10 list the target analytes for volatiles, semi-volatiles and pesticides/PCBs, respectively.

Tables 14-4 and 14-5 provide a statistical overview of field and conventional data and inorganic data for the Jasper Equivalent aquifer, listing the minimum, maximum, and average results for these parameters collected in the FY 2018 sampling. Tables 14-6 and 14-7 compare these same parameter averages to historical ASSET-derived data for the Jasper Equivalent aquifer, from fiscal years 1997, 2000, 2003, 2006, 2009, 2012, and 2015.

The average values listed in the above referenced tables are determined using all valid, reported results, including those reported as non-detect, or less than the detection limit (< DL). Per Departmental policy concerning statistical analysis, one-half the DL is used in place of zero when non-detects are encountered. However, the minimum value is reported < DL, not one-half the DL. If all values for a particular analyte are determined to be < DL, then the minimum, maximum, and average values are all reported as < DL.

Due to the variability in the laboratory's reporting detection limits caused by dilution factors, whenever an analyte in question is not detected, the standard reporting detection limit value for each analytical method is used as the DL when performing statistical calculations.

Charts 14-1 through 14-17 represent the trend of the graphed parameter, based on the averaged value of that parameter for each three-year reporting period. Discussion of historical

data and related trends is found in the **Water Quality Trends and Comparison to Historical ASSET Data** section.

INTERPRETATION OF DATA

Under the Federal Safe Drinking Water Act, EPA has established maximum contaminant levels (MCLs) for pollutants that may pose a health risk in public drinking water. An MCL is the highest level of a contaminant that EPA allows in public drinking water. MCLs ensure that drinking water does not pose either a short-term or long-term health risk. While not all wells sampled were public supply wells, the ASSET Program uses the MCLs as a benchmark for further evaluation.

EPA has set secondary standards, which are defined as non-enforceable taste, odor, or appearance guidelines. Field and laboratory data contained in Tables 14-2 and 14-3 show that 12 secondary MCLs (SMCLs) were exceeded in eight of the 15 wells sampled in the Jasper Equivalent aquifer.

Field and Conventional Parameters

Table 14-2 shows the field and conventional parameters for which samples are collected at each well and the analytical results for those parameters. Table 14-6 provides an overview of field and conventional parameter data averages for the Jasper Equivalent aquifer, including the previous sampling event averages.

<u>Federal Primary Drinking Water Standards:</u> A review of the analysis listed in Table 14-2 shows that no MCL was exceeded for field or conventional parameters for this reporting period.

<u>Federal Secondary Drinking Water Standards:</u> A review of the analysis listed in Table 14-2 shows that seven wells exceeded the SMCL for pH, two wells exceeded the SMCL for color, and one well exceeded the SMCLs for chloride and total dissolved solids. Following is a list of SMCL exceedances with well number and results:

pH (SMCL = 6.5 - 8.5 Standard Units):

EB-630	8.73 SU (Original and Duplicate)	
EB-854	8.86 SU	
LI-185	8.52 SU	
LI-229	8.95 SU	
PC-275	9.14 SU	
ST-1135	8.75 SU	
TA-286	8.67 SU	

Color (SMCL = 15 PCU):

10-213	231 00	
WA-248	40 PCU, Duplicate	37 PCU

Chloride (SMCL = 250 mg/L):

EB-630 269.0 mg/L, Duplicate 270.0 mg/L

Total Dissolved Solids (SMCL = 500 mg/L or 0.5 g/L):

	LAB RESULTS (in mg/l	_)	<u>FIELD MEASURES (in g/L)</u>				
EB-630	555 mg/L, Duplicate	545 mg/L	0.734 g/L, Duplicate	0.734 g/L			

Inorganic Parameters

Table 14-3 shows the inorganic parameters for which samples are collected at each well and the analytical results for those parameters. Table 14-7 provides an overview of inorganic parameter data averages for the Jasper Equivalent aquifer, including the previous sampling event averages.

<u>Federal Primary Drinking Water Standards:</u> A review of the analyses listed on Table 14-3 shows that no MCL was exceeded for total metals.

<u>Federal Secondary Drinking Water Standards:</u> Laboratory data contained in Table 14-3 shows that the SMCL for iron was exceeded in one well, listed below.

Iron (SMCL = $300 \mu g/L$):

WA-248

474 µg/L, Duplicate

525 µg/L

Volatile Organic Compounds

Table 14-6 shows the volatile organic compound (VOC) parameters for which samples are collected at each well. Due to the number of analytes in this category, analytical results are not tabulated; however, any detection of a VOC would be discussed in this section.

Two VOCs were detected at low levels in two of the wells that were sampled. Chloroform was detected in well WA-248 in the original and duplicate samples at 2.0 μ g/L and 1.9 μ g/L, respectively. Methylene chloride was detected in well ST-995 at 3.8 μ g/L. Neither of these compounds have MCLs established for them. There were no other confirmed VOC detections at or above its detection limit during the FY 2018 sampling of the Jasper Equivalent aquifer.

Semi-Volatile Organic Compounds

Table 14-7 shows the semi-volatile organic compound (SVOC) parameters for which samples are collected at each well. Due to the number of analytes in this category, analytical results are not tabulated; however any detection of a SVOC would be discussed in this section.

The semi-volatile organic compound, di-n-butyl phthalate (no MCL established) was detected in well EB-854 at 48.4 μ g/L. There were no other confirmed SVOC detections at or above its detection limit during the FY 2018 sampling of the Jasper Equivalent aguifer.

Pesticides and PCBs

Table 14-8 shows the pesticide and PCB parameters for which samples are collected at each well. Due to the number of analytes in this category, analytical results are not tabulated; however any detection of a pesticide or PCB would be discussed in this section.

There were no confirmed Pesticide or PCB at or above its detection limit during the FY 2018 sampling of the Jasper Equivalent aquifer.

WATER QUALITY TRENDS AND COMPARISON TO HISTORICAL ASSET DATA

Analytical and field data show that the quality and characteristics of groundwater produced from the Jasper Equivalent aquifer show some change when comparing current data to that of the six previous sampling rotations. These comparisons can be found in Tables 14-6 and 14-7, and in Charts 14-1 to 14-17 of this summary. Increasing or decreasing trend statements made here are based on an R-square value (slope) of 0.03 or greater. An R-square value of less than 0.03 is considered to have only a slight or no change.

Over the 21-year period, 10 analytes have shown a general increase in average concentration. These analytes are: alkalinity, chloride, iron, pH, salinity, specific conductance (lab and field), sulfate, total dissolved solids (field only), total Kjeldahl nitrogen, and total phosphorus. For this same period, four analytes have shown a general decrease. These analytes are barium, hardness, temperature, and zinc. All other analyte averages have remained consistent or have been non-detect for this period. The number of wells and secondary exceedances in the Jasper Equivalent aquifer has decreased from the previous sampling. There were 10 wells with one or more SMCL exceedances in FY 2015 for a total of 15 SMCL exceedances. In the FY 2018 sampling, there were eight wells with a total of 12 SMCL exceedances.

SUMMARY AND RECOMMENDATIONS

In summary, the data show that the groundwater produced from this aquifer is soft¹ and is of good quality when considering short-term or long-term health risk guidelines. Laboratory data show that no ASSET well that was sampled during the Fiscal Year 2018 monitoring of the Jasper Equivalent aquifer exceeded a primary MCL. The data also show that this aquifer is of good quality when considering taste, odor, or appearance guidelines, with 12 SMCLs exceeded in eight wells.

Comparison to historical ASSET-derived data shows some change in the quality or characteristics of the Jasper Equivalent aquifer, with 10 parameters showing increases in average concentrations and four parameters decreasing in average concentrations with the remainder of the analyte averages staying consistent over the 21 year period.

It is recommended that the wells assigned to the Jasper Equivalent aquifer be re-sampled as planned, in approximately three years. In addition, several wells should be added to the 15 currently in place to increase the well density for this aquifer.

¹ Classification based on hardness scale from: Peavy, H. S. et al. *Environmental Engineering*. New York: McGraw-Hill, 1985.

Table 14-1: List of Wells Sampled, Jasper Equivalent Aquifer – FY 2018

Well ID	Parish	Date	Owner	Depth (Feet)	Well Use
EB-630	East Baton Rouge	10/31/2017	Baton Rouge Water Company	2,253	Public Supply
EB-854	East Baton Rouge	11/14/2017	City of Zachary	2,090	Public Supply
EF-272	East Feliciana	11/13/2017	Louisiana. War Vets Home	1,325	Public Supply
LI-185	Livingston	10/31/2017	City of Denham Springs	2,610	Public Supply
LI-229	Livingston	11/14/2017	Ward 2 Water District	1,826	Public Supply
LI-257	Livingston	4/26/2018	Village of Albany	1,842	Public Supply
PC-275	Point Coupee	10/19/2017	Private Owner	1,912	Domestic
SH-104	St. Helena	4/25/2018	Cal Maine Foods	1,652	Industrial
ST-995	St. Tammany	6/7/2018	Insta-Gator	2,290	Irrigation
ST-1135	St. Tammany	5/31/2018	Lakeshore Estates	2,605	Public Supply
ST-FOLSOM	St. Tammany	5/31/2018	Village of Folsom	2,265	Public Supply
TA-560	Tangipahoa	4/25/2018	Town of Roseland	2,032	Public Supply
TA-826	Tangipahoa	4/26/2018	City of Ponchatoula	2,015	Public Supply
WA-248	Washington	6/28/2018	Town of Franklinton	2,700	Public Supply
WF-264	West Feliciana	11/13/2017	West Feliciana Parish Utilities	960	Public Supply

Table 14-2: Summary of Field and Conventional Data, Jasper Equivalent Aquifer – FY 2018

Well ID	pH SU	Sal. ppt	Sp. Cond. mmhos/cm	Temp Deg. C	TDS g/L	Alk mg/L	CI mg/L	Color PCU	Hard. mg/L	Nitrite- Nitrate (as N) mg/L	NH3 mg/L	Tot. P mg/L	Sp. Cond. µmhos/cm	SO4 mg/L	TDS mg/L	TKN mg/L	TSS mg/L	Turb. mg/L
	LAB	ORATO	RY REPORT	TING LIMI	TS →	2	1	5	5	0.05	0.1	0.05	1	1	10	0.1	4	0.1
	FIELD PARAMETERS								LABORA	TORY P	ARAMETERS							
EB-630	8.73	0.55	1.129	30.29	0.734	193	269.0	9	20	< DL	0.30	0.23	1050	9.6	555	0.43	< DL	0.37
EB-630*	8.73	0.55	1.129	30.29	0.734	179	270.0	11	18	< DL	0.30	0.25	1070	9.4	545	0.79	< DL	0.40
EB-854	8.86	0.17	0.351	26.72	0.228	163	5.3	< DL	< DL	< DL	0.30	0.27	362	8.5	340	0.34	< DL	0.22
EF-272	8.19	0.15	0.324	19.82	0.211	145	8.8	< DL	< DL	0.14	< DL	0.30	341	7.1	300	0.63	5	2.20
EF-272*	8.19	0.15	0.324	19.82	0.211	145	7.6	< DL	< DL	0.14	0.12	0.33	342	6.7	270	0.13	< DL	2.40
LI-185	8.52	0.12	0.266	29.49	0.173	141	4.8	< DL	6	< DL	< DL	0.25	254	10.7	115	0.45	< DL	0.41
LI-229	8.95	0.15	0.307	24.64	0.199	140	3.2	< DL	< DL	< DL	0.15	0.20	305	7.0	205	0.34	< DL	0.16
LI-257	7.86	0.11	0.239	25.43	0.156	109	3.4	< DL	< DL	< DL	< DL	0.35	253	8.6	185	1.10	< DL	0.17
PC-275	9.14	0.32	0.657	17.96	0.427	348	32.2	25	< DL	< DL	0.58	0.80	683	6.5	360	0.95	< DL	0.21
SH-104	8.31	0.19	0.395	22.72	0.257	188	3.5	< DL	< DL	< DL	0.21	0.44	424	7.6	220	0.80	< DL	0.23
SH-104*	8.31	0.19	0.395	22.72	0.257	192	3.4	< DL	< DL	< DL	0.23	0.53	423	7.4	245	0.73	< DL	0.36
ST-1135	8.75	0.25	0.519	34.47	0.337	225	12.6	13	< DL	< DL	0.54	0.26	518	11.0	275	0.86	< DL	0.26
ST-995	7.23	0.09	0.186	22.6	0.121	80	3.1	5	6	< DL	< DL	0.41	195	8.6	145	0.37	< DL	0.15
ST-FOLSOM	7.36	0.12	0.255	26.56	0.166	118	3.0	< DL	< DL	< DL	0.16	0.22	268	9.4	155	0.33	< DL	0.30
ST-FOLSOM*	7.36	0.12	0.255	26.56	0.166	116	3.0	< DL	< DL	< DL	0.14	0.29	269	9.3	210	0.45	4	0.34
TA-560	7.63	0.1	0.217	24.97	0.141	99	3.0	< DL	< DL	< DL	0.11	0.61	212	7.7	190	0.55	< DL	1.60
TA-826	8.67	0.16	0.327	26.9	0.212	151	2.6	< DL	< DL	< DL	0.14	0.20	344	9.7	140	1.60	< DL	0.24
WA-248	7.84	0.18	0.376	25.8	0.244	154	17.0	40	< DL	0.07	0.26	0.53	384	5.1	260	0.83	< DL	7.80
WA-248*	7.84	0.18	0.376	25.8	0.244	156	16.7	37	< DL	0.07	0.24	0.51	394	5.3	265	0.95	6	2.40
WF-264	7.45	0.14	0.284	20.75	0.185	132	2.4	< DL	10	< DL	0.30	0.15	294	7.0	285	0.57	< DL	0.20

^{*} Duplicate Sample

Exceeds EPA secondary standard (SMCL)

Table 14-3: Summary of Inorganic Data, Jasper Equivalent Aquifer – FY 2018

Well Number	Antimony µg/L	Arsenic μg/L	Barium µg/L	Beryllium µg/L	Cadmium µg/L	Chromium µg/L	Copper µg/L	Iron μg/L	Lead µg/L	Mercury μg/L	Nickel μg/L	Selenium µg/L	Silver µg/L	Thallium μg/L	Zinc µg/L
Laboratory Detection Limits	1	1	1	0.5	1	1	3	50	1	0.2	1	1	0.5	0.5	5
EB-630	< DL	< DL	70.2	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
EB-630*	< DL	< DL	67.3	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
EB-854	< DL	< DL	6.5	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
EF-272	< DL	< DL	10.2	< DL	< DL	< DL	122	270	13.7	< DL	1.2	< DL	< DL	< DL	7.8
EF-272*	< DL	< DL	9.6	< DL	< DL	< DL	121	275	13.3	< DL	< DL	< DL	< DL	< DL	7.6
LI-185	< DL	< DL	20.0	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
LI-229	< DL	< DL	11.0	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
LI-257	< DL	< DL	7.0	< DL	< DL	< DL	< DL	67	< DL	< DL	< DL	< DL	< DL	< DL	< DL
PC-275	< DL	< DL	9.1	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	5.1
SH-104	1.2	< DL	3.0	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
SH-104*	< DL	< DL	3.1	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
ST-1135	< DL	< DL	15.1	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
ST-995	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
ST-FOLSOM	< DL	< DL	2.7	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
ST-FOLSOM*	< DL	< DL	2.6	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
TA-560	< DL	< DL	< DL	< DL	< DL	< DL	< DL	54	< DL	< DL	< DL	< DL	< DL	< DL	< DL
TA-826	< DL	< DL	24.7	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
WA-248	< DL	< DL	4.8	< DL	< DL	< DL	< DL	474	< DL	< DL	< DL	< DL	< DL	< DL	< DL
WA-248*	< DL	< DL	5.1	< DL	< DL	< DL	< DL	525	< DL	< DL	< DL	< DL	< DL	< DL	< DL
WF-264	< DL	< DL	43.4	< DL	< DL	< DL	< DL	143	< DL	< DL	< DL	< DL	< DL	< DL	< DL

^{*} Duplicate Sample Exceeds EPA secondary standard (SMCL)

Table 14-4: FY 2018 Field and Conventional Statistics, ASSET Wells

	PARAMETER	MINIMUM	MAXIMUM	AVERAGE
	pH (SU)	7.23	9.14	8.20
	Salinity (ppt)	0.09	0.55	0.20
FIELD	Specific Conductance (mmhos/cm)	0.186	1.129	0.416
ш	Temperature (°C)	17.96	34.47	25.22
	Total Dissolved Solids (g/L)	0.121	0.734	0.270
	Alkalinity (mg/L)	81	348	159
	Chloride (mg/L)	2.4	270.0	33.7
	Color (PCU)	< DL	40	9
	Hardness (mg/L)	< DL	20	< DL
	Nitrite - Nitrate, as N (mg/L)	< DL	0.14	< DL
LABORATORY	Ammonia, as N (mg/L)	< DL	0.58	0.21
RA.	Total Phosphorus (mg/L)	0.15	0.80	0.36
\BO	Specific Conductance (µmhos/cm)	195	1070	419
ב	Sulfate (mg/L)	5.1	11.0	8.1
	Total Dissolved Solids (mg/L)	115	555	263
	Total Kjeldahl Nitrogen (mg/L)	0.13	1.60	0.66
	Total Suspended Solids (mg/L)	< DL	6	< DL
	Turbidity (NTU)	0.15	7.80	1.02

Table 14-5: FY 2018 Inorganic Statistics, ASSET Wells

PARAMETER	MINIMUM	MAXIMUM	AVERAGE
Antimony (μg/L)	< DL	1.2	< DL
Arsenic (µg/L)	< DL	< DL	< DL
Barium (µg/L)	< DL	70.2	15.8
Beryllium (μg/L)	< DL	< DL	< DL
Cadmium (µg/L)	< DL	< DL	< DL
Chromium (µg/L)	< DL	< DL	< DL
Copper (µg/L)	< DL	122.0	13.5
Iron (μg/L)	< DL	525	107
Lead (µg/L)	< DL	13.7	1.8
Mercury (µg/L)	< DL	< DL	< DL
Nickel (μg/L)	< DL	1.2	< DL
Selenium (µg/L)	< DL	< DL	< DL
Silver (µg/L)	< DL	< DL	< DL
Thallium (µg/L)	< DL	< DL	< DL
Zinc (μg/L)	< DL	7.8	< DL

Table 14-6: Triennial Field and Conventional Statistics, ASSET Wells

	PARAMETER		AVERAGE VALUES BY FISCAL YEAR									
	TAINAMETER		FY 2000	FY 2003	FY 2006	FY 2009	FY 2012	FY 2015	FY 2018			
	pH (SU)	7.64	Invalid	8.67	8.67	8.12	8.76	8.49	8.20			
	Salinity (ppt)	0.17	0.18	0.17	0.18	0.16	0.17	0.19	0.20			
ELD	Specific Conductance (mmhos/cm)	0.350	0.380	0.370	0.368	0.330	0.366	0.393	0.416			
E	Temperature (OC)	29.00	28.84	28.13	29.16	27.62	27.00	28.54	25.22			
	Total Dissolved Solids (g/L)	-	-	-	0.180	0.170	0.238	0.255	0.270			
	Alkalinity (mg/L)	137	167	163	165	164	156	201	159			
	Chloride (mg/L)	12.1	17.9	14.4	24.5	6.4	14.0	20.4	33.7			
	Color (PCU)	8	6	10	9	2	6	8	9			
	Hardness (mg/L)	7	6	11	6	5	8	10	< DL			
RY	Nitrite - Nitrate, as N (mg/L)	< DL	< DL	0.06	< DL							
TOF	Ammonia, as N (mg/L)	0.31	0.27	0.24	0.29	0.89	0.22	0.46	0.21			
RA	Total Phosphorus (mg/L)	0.20	0.28	0.32	0.26	0.41	0.51	0.33	0.36			
BO	Specific Conductance (µmhos/cm)	335	394	343	397	309	327	377	419			
LA	Sulfate (mg/L)	8.8	7.3	8.1	8.3	9.4	8.0	9.4	8.1			
	Total Dissolved Solids (mg/L)	258	251	221	250	279	220	215	263			
	Total Kjeldahl Nitrogen (mg/L)	0.19	0.47	0.33	0.43	1.55	< DL	0.63	0.66			
	Total Suspended Solids (mg/L)	4.1	8.6	< DL								
	Turbidity (NTU)	< DL	1.1	1.1	< DL	< DL	0.2	0.5	1.02			

Table 14-7: Triennial Inorganic Statistics, ASSET Wells

			AVERA	GE VALUES	S BY FISCA	L YEAR		
PARAMETER	FY 1997	FY 2000	FY 2003	FY 2006	FY 2009	FY 2012	FY 2015	FY 2018
Antimony (μg/L)	7.78	< DL	< DL	< DL	< DL	< DL	< DL	< DL
Arsenic (µg/L)	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
Barium (µg/L)	24	12	22	14	14	12	17	15.8
Beryllium (µg/L)	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
Cadmium (µg/L)	1.13	1.02	< DL	< DL	< DL	< DL	< DL	< DL
Chromium (µg/L)	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
Copper (µg/L)	< DL	< DL	< DL	< DL	< DL	< DL	< DL	13.5
Iron (µg/L)	28	28	86	31	< DL	< DL	63	107
Lead (µg/L)	< DL	< DL	< DL	< DL	< DL	0.64	< DL	1.8
Mercury (µg/L)	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
Nickel (μg/L)	< DL	< DL	< DL	< DL	7.79	< DL	< DL	< DL
Selenium (µg/L)	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
Silver (µg/L)	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
Thallium (µg/L)	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
Zinc (µg/L)	< DL	22.9	56.8	< DL	10.3	3.0	< DL	< DL

Table 14-8: Volatile Organic Compound List

VOC ANAYTICAL PARAMETERS	METHOD	REPORTING LIMIT (µg/L)
1,1,1-TRICHLOROETHANE	624	0.50
1,1,2,2-TETRACHLOROETHANE	624	0.50
1,1,2-TRICHLOROETHANE	624	0.50
1,1-DICHLOROETHANE	624	0.50
1,1-DICHLOROETHENE	624	0.50
1,2-DICHLOROBENZENE	624	0.50
1,2-DICHLOROETHANE	624	0.50
1,2-DICHLOROPROPANE	624	0.50
1,3-DICHLOROBENZENE	624	0.50
1,4-DICHLOROBENZENE	624	0.50
BENZENE	624	0.50
BROMODICHLOROMETHANE	624	0.50
BROMOFORM	624	0.50
BROMOMETHANE	624	1.0
CARBON TETRACHLORIDE	624	0.50
CHLOROBENZENE	624	0.50
CHLOROETHANE	624	0.50
CHLOROFORM	624	0.50
CHLOROMETHANE	624	1.0
CIS-1,3-DICHLOROPROPENE	624	1.0
DIBROMOCHLOROMETHANE	624	0.50
ETHYL BENZENE	624	0.50
METHYLENE CHLORIDE	624	1.0
O-XYLENE (1,2-DIMETHYLBENZENE)	624	0.50
STYRENE	624	0.50
TERT-BUTYL METHYL ETHER	624	0.50
TETRACHLOROETHYLENE (PCE)	624	0.50
TOLUENE	624	0.50
TRANS-1,2-DICHLOROETHENE	624	0.50
TRANS-1,3-DICHLOROPROPENE	624	0.50
TRICHLOROETHYLENE (TCE)	624	0.50
TRICHLOROFLUOROMETHANE (FREON-11)	624	0.50
VINYL CHLORIDE	624	0.50
XYLENES, M & P	624	1.0

Table 14-9: Semi-Volatile Organic Compound List

SVOC ANAYTICAL PARAMETERS	METHOD	REPORTING LIMIT (μg/L)
1,2,4-TRICHLOROBENZENE	625	5.0
2,4,6-TRICHLOROPHENOL	625	5.0
2,4-DICHLOROPHENOL	625	5.0
2,4-DIMETHYLPHENOL	625	5.0
2,4-DINITROPHENOL	625	20.0
2,4-DINITROTOLUENE	625	5.0
2,6-DINITROTOLUENE	625	5.0
2-CHLORONAPHTHALENE	625	5.0
2-CHLOROPHENOL	625	5.0
2-NITROPHENOL	625	5.0
3,3'-DICHLOROBENZIDINE	625	5.0
4,6-DINITRO-2-METHYLPHENOL	625	10.0
4-BROMOPHENYL PHENYL ETHER	625	5.0
4-CHLORO-3-METHYLPHENOL	625	5.0
4-CHLOROPHENYL PHENYL ETHER	625	5.0
4-NITROPHENOL	625	20.0
ACENAPHTHENE	625	0.20
ACENAPHTHYLENE	625	0.20
ANTHRACENE	625	0.20
BENZIDINE	625	20.0
BENZO(A)ANTHRACENE	625	0.20
BENZO(A)PYRENE	625	0.20
BENZO(B)FLUORANTHENE	625	0.20
BENZO(G,H,I)PERYLENE	625	0.20
BENZO(K)FLUORANTHENE	625	0.20
BENZYL BUTYL PHTHALATE	625	5.0
BIS(2-CHLOROETHOXY) METHANE	625	5.0
BIS(2-CHLOROETHYL) ETHER (2-CHLOROETHYL ETHER)	625	5.0
BIS(2-ETHYLHEXYL) PHTHALATE	625	5.0
CHRYSENE	625	0.20
DIBENZ(A,H)ANTHRACENE	625	0.20
DIETHYL PHTHALATE	625	5.0
DIMETHYL PHTHALATE	625	5.0
DI-N-BUTYL PHTHALATE	625	5.0
DI-N-OCTYLPHTHALATE	625	5.0
FLUORANTHENE	625	0.20
FLUORENE	625	0.20

SVOC ANAYTICAL PARAMETERS	METHOD	REPORTING LIMIT (μg/L)
HEXACHLOROBENZENE	625	5.0
HEXACHLOROBUTADIENE	625	5.0
HEXACHLOROCYCLOPENTADIENE	625	10.0
HEXACHLOROETHANE	625	5.0
INDENO(1,2,3-C,D)PYRENE	625	0.20
ISOPHORONE	625	5.0
NAPHTHALENE	625	0.20
NITROBENZENE	625	5.0
N-NITROSODIMETHYLAMINE	625	5.0
N-NITROSODI-N-PROPYLAMINE	625	5.0
N-NITROSODIPHENYLAMINE	625	5.0
PENTACHLOROPHENOL	625	5.00
PHENANTHRENE	625	0.20
PHENOL	625	5.0
PYRENE	625	0.20

Table 14-10: Pesticide and PCB List

Pest/PCB Analytical Parameters	METHOD	REPORTING LIMIT (μg/L)
ALDRIN	608	0.025
ALPHA BHC (ALPHA HEXACHLOROCYCLOHEXANE)	608	0.025
ALPHA ENDOSULFAN	608	0.025
ALPHA-CHLORDANE	608	0.025
BETA BHC (BETA HEXACHLOROCYCLOHEXANE)	608	0.025
BETA ENDOSULFAN	608	0.025
CHLORDANE	608	0.20
DELTA BHC (DELTA HEXACHLOROCYCLOHEXANE)	608	0.025
DIELDRIN	608	0.025
ENDOSULFAN SULFATE	608	0.025
ENDRIN	608	0.025
ENDRIN ALDEHYDE	608	0.025
ENDRIN KETONE	608	0.025
GAMMA-CHLORDANE	608	0.025
HEPTACHLOR	608	0.025
HEPTACHLOR EPOXIDE	608	0.025
METHOXYCHLOR	608	0.25
P,P'-DDD	608	0.025
P,P'-DDE	608	0.025
P,P'-DDT	608	0.025
PCB-1016 (AROCHLOR 1016)	608	0.80
PCB-1221 (AROCHLOR 1221)	608	0.80
PCB-1232 (AROCHLOR 1232)	608	0.80
PCB-1242 (AROCHLOR 1242)	608	0.80
PCB-1248 (AROCHLOR 1248)	608	0.80
PCB-1254 (AROCHLOR 1254)	608	0.80
PCB-1260 (AROCHLOR 1260)	608	0.80
TOXAPHENE	608	1.0

Figure 14-1: Location Plat, Jasper Equivalent Aquifer

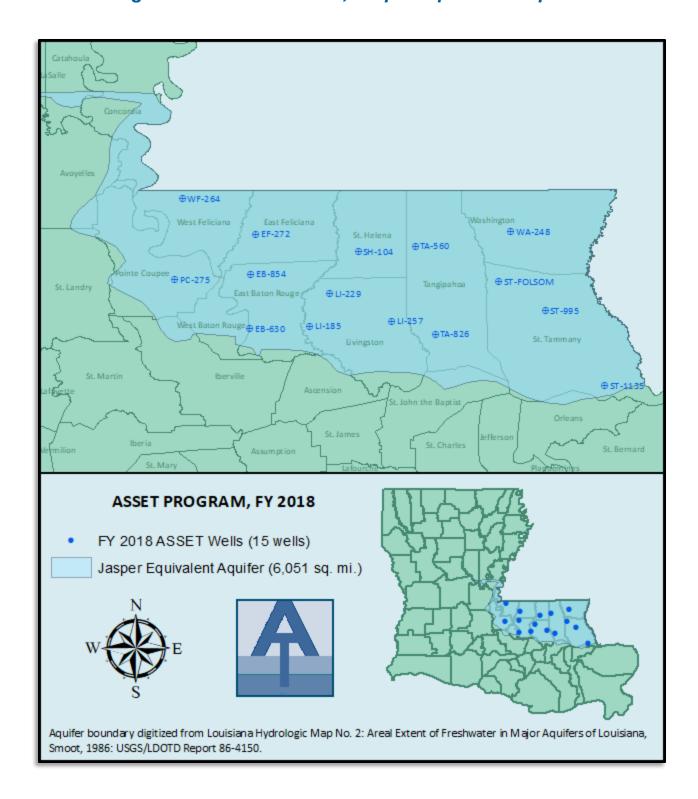


Chart 14-1: Temperature Trend

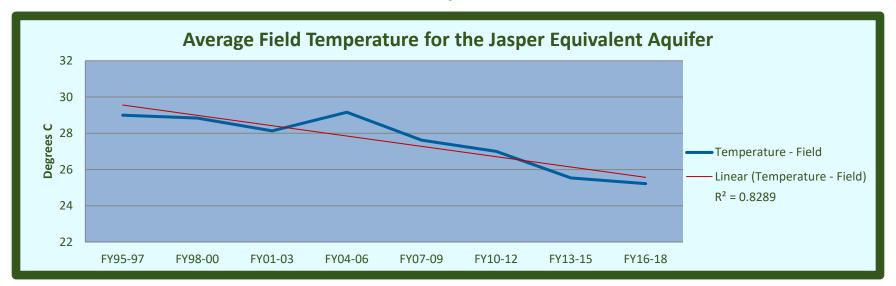


Chart 14-2: pH Trend

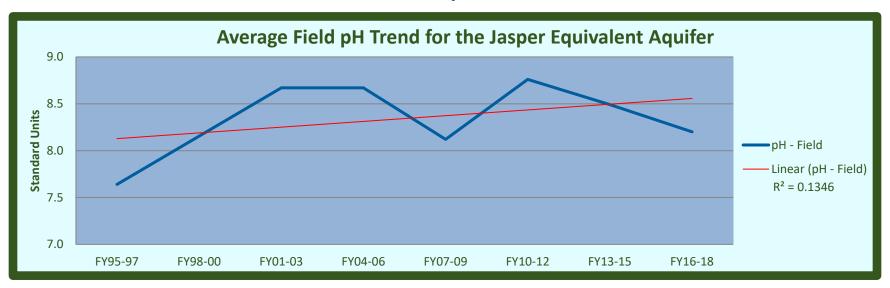


Chart 14-3: Specific Conductance Trend

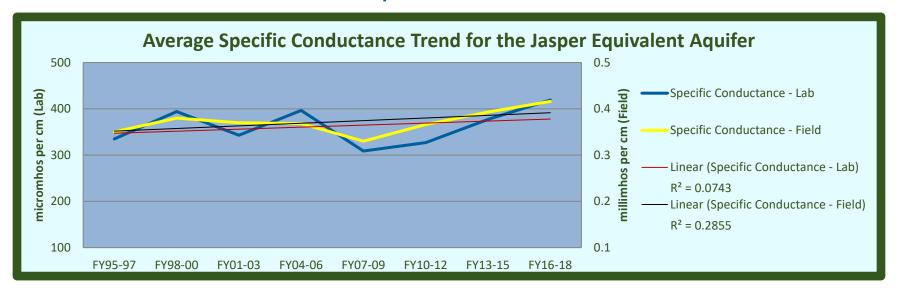


Chart 14-4: Field Salinity Trend

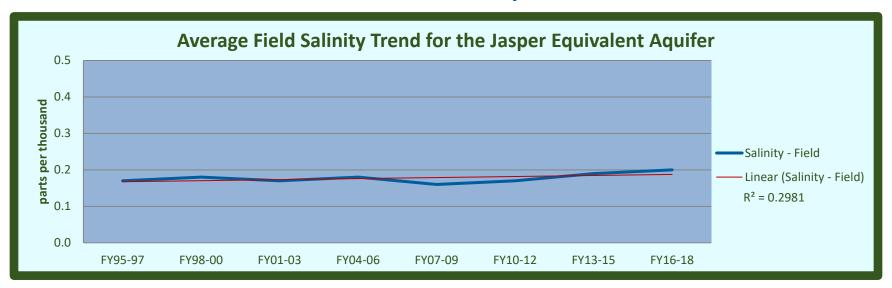


Chart 14-5: Chloride Trend

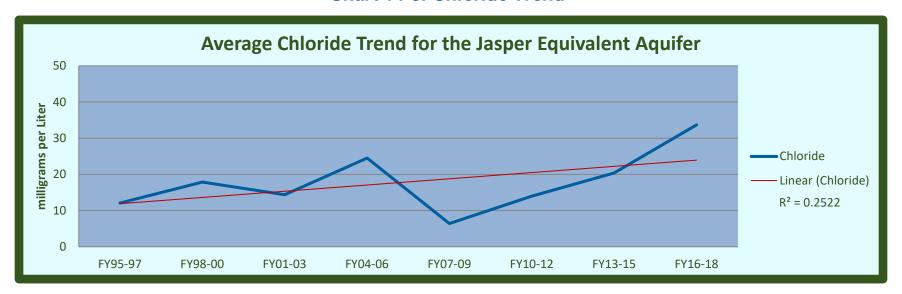


Chart 14-6: Total Dissolved Solids Trend

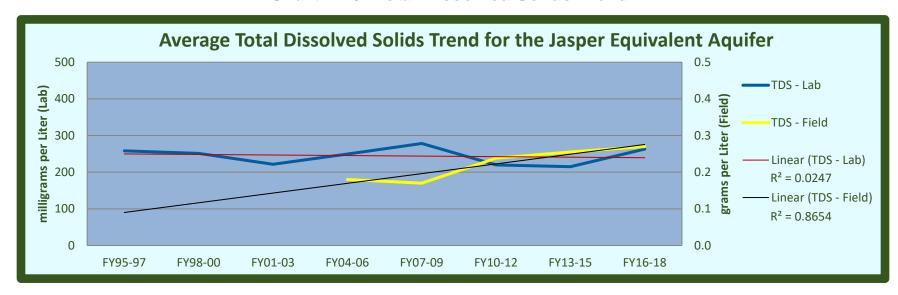


Chart 14-7: Alkalinity Trend

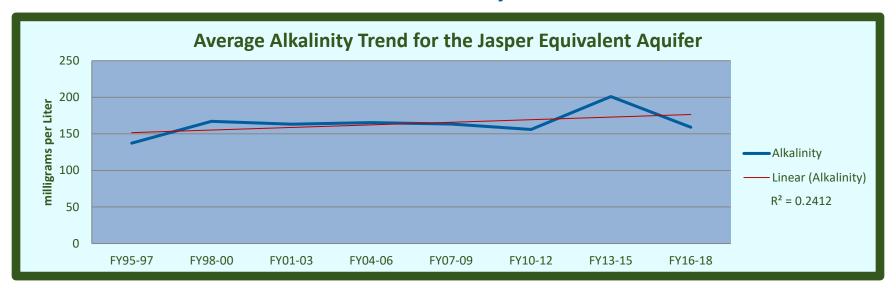


Chart 14-8: Hardness Trend

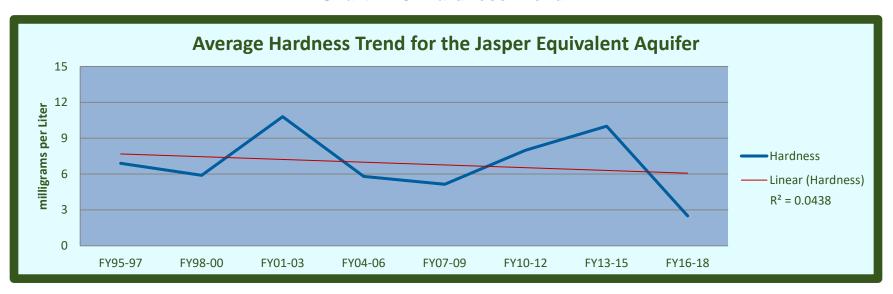


Chart 14-9: Sulfate Trend

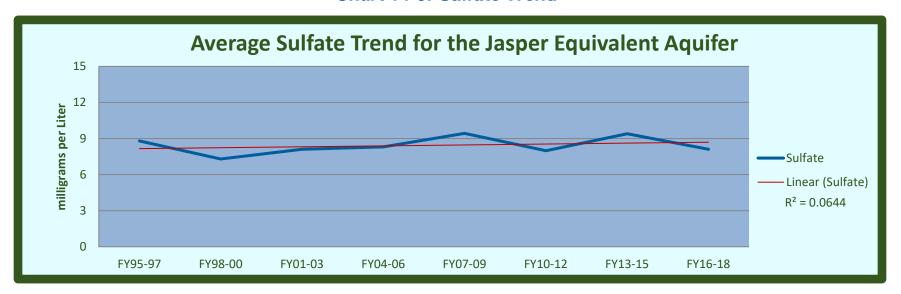


Chart 14-10: Color Trend

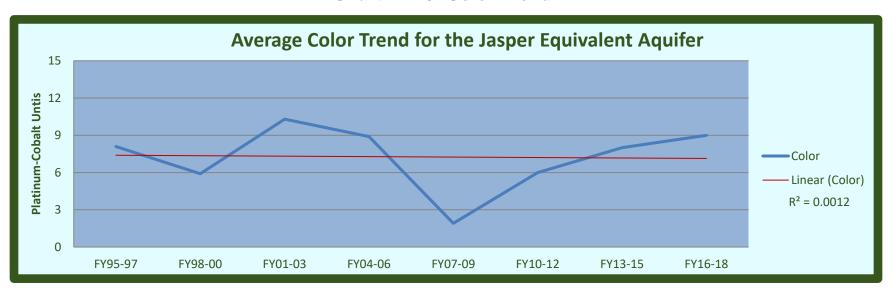


Chart 14-11: Ammonia Trend

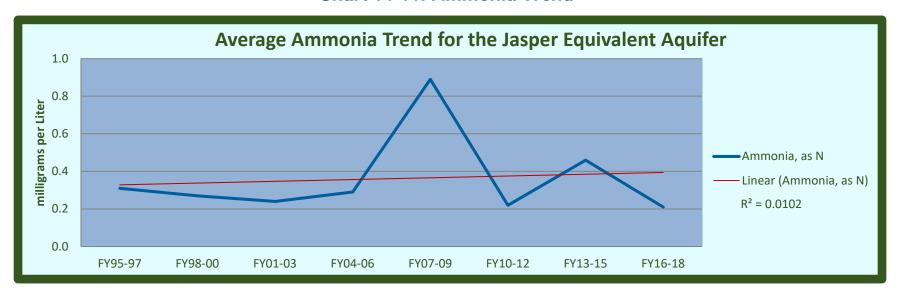


Chart 14-12: Nitrite - Nitrate Trend

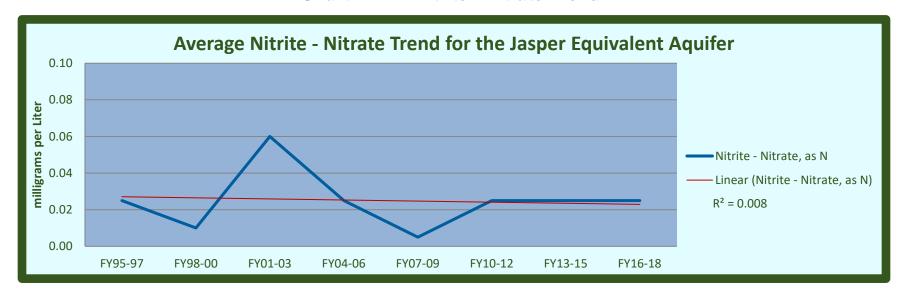


Chart 14-13: Total Kjeldahl Nitrogen Trend

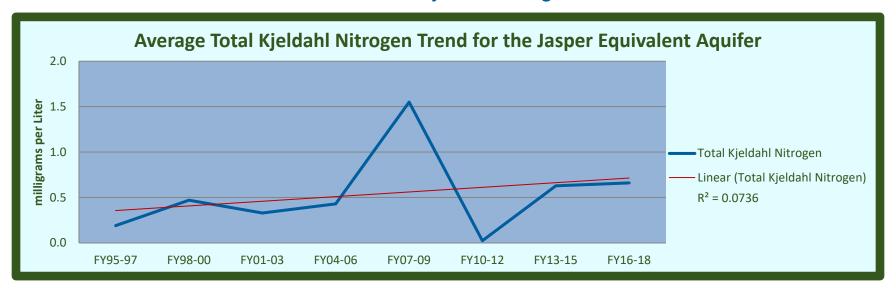


Chart 14-14: Total Phosphorus Trend

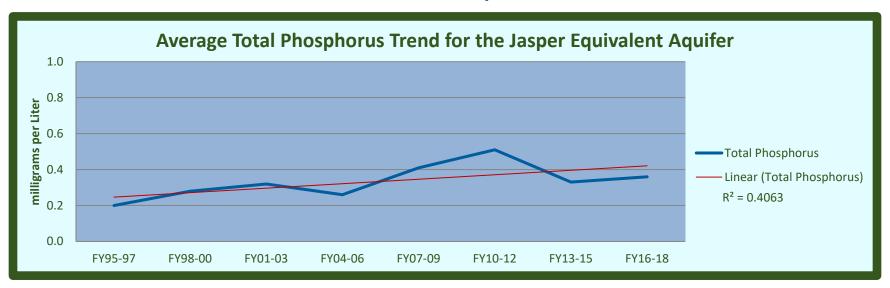


Chart 14-15: Barium Trend



Chart 14-16: Iron Trend

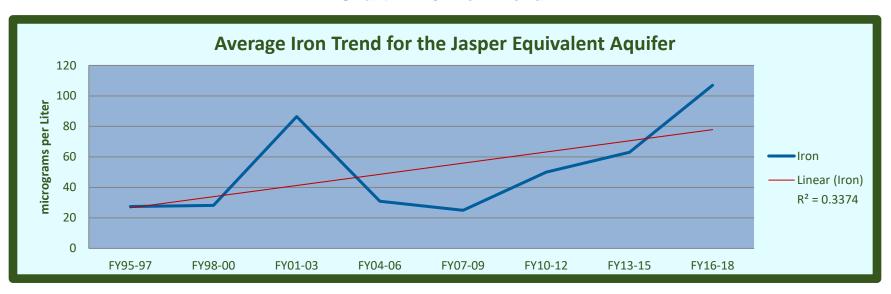


Chart 14-17: Zinc Trend

